İçeriğe atla

Mantık bağlacı

On altı ikili mantıksal bağlaç: totolojiler ve doğruluk değerleri.

Mantıkta, bir bağlaç, iki ya da daha fazla cümleyi, söz dizimi kurallarına uygun olarak bağlayan bir sembol ya da sözcüktür. Bağlaç ile oluşturulan bileşik cümle sadece esas cümlelere bağımlıdır.

En sık kullanılan mantık bağlaçları iki cümleyi birleştirmek için kullanılan ikili bağlaçlardır. Sıkça kullanılan tümleme ise bir tekli bağlaçtır.

Bağlaçlar ve niceleyiciler, mantık sistemlerinde kullanılan ana sabit çeşitleridir. Mantık bağlaçları anlamsal olarak çoğunlukla doğruluk fonksiyonu ile ifade edilir, ancak bunun geçerli olmadığı durumlar da vardır.

Yaygın mantık bağlaçları

Yaygın olarak kullanılan mantık bağlaçları ve gösterimleri:

  • Tümleme (değil): ¬ , ~,'
  • Birleşme (ve): ∧ , & , ∙
  • Ayrılma (veya): ∨, ;
  • Koşul (ise): →, ⇒ , ⊃
  • İki koşulluluk (ancak ve ancak): ↔ , ≡ , =

Örnek olarak hava yağışlı ve ben evdeyim cümleleri mantık bağlaçları kullanılarak aşağıdaki gibi değiştirilmiştir (P = hava yağışlı, Q = ben evdeyim):

  • Hava yağışlı değil ().
  • Hava yağışlı ve ben evdeyim ().
  • Hava yağışlı veya ben evdeyim ().
  • Hava yağışlı ise ben evdeyim ().
  • Ben evde isem hava yağışlı().
  • Ben evdeyim ancak ve ancak hava yağışlıysa().

Ayrıca hep doğru ve hep yanlış sabitleri de bağlaç olarak sınıflandırılır:

Öncelik sırası

Bağlaçlar arasındaki öncelik parantezlerle belirlenebileceği gibi, aşırı parantez kullanımını önlemek için öncelik kuralları kullanılabilir: ¬ bağlacı ∧ bağlacından, ∧ bağlacı ∨ bağlacından, ∨ bağlacı → bağlacından daha yüksek önceliğe sahiptir. Örneğin, ifadesi ifadesinin kısaltılmış halidir.

Aşağıdaki tablo yaygın olarak kullanılan mantık işleçleri arasındaki öncelik sırasını göstermektedir.[1]

Ancak, bütün yazarlar aynı sıralamayı kullanmayabilir: Örneğin, ayrılma bağlacının (∨) koşul bağlacından (→) daha düşük önceliğe sahip olduğu bir sıralama kullanılmıştır.[2] Bazen ayrılma ile birleşme bağlaçları arasındaki öncelik belirsiz bırakılarak parantez kullanımı zorunlu kılınır. Öncelik sırası, bir mantık formülü yorumlanırken hangi bağlacın "ana bağlaç" olduğunu belirler.

Ayrıca bakınız

Kaynakça

  1. ^ O'Donnell, John; Hall, Cordelia; Page, Rex (2007). Discrete Mathematics Using a Computer. Springer. s. 120. 3 Haziran 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Mart 2017. 
  2. ^ Jackson, Daniel (2012). Software Abstractions: Logic, Language, and Analysis. MIT Press. s. 263. 17 Haziran 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Mart 2017. 

İlgili Araştırma Makaleleri

Matematiksel mantık, biçimsel mantığın matematiğe uygulanmasıyla ilgilenen bir matematik dalıdır. Metamatematik, matematiğin temelleri ve kuramsal bilgisayar bilimi alanlarıyla yakınlık gösterir. Matematiksel mantığın temel konuları biçimsel sistemlerin ifade gücünün ve biçimsel ispat sistemlerinin tümdengelim gücünün belirlenmesidir.

<span class="mw-page-title-main">Mantık</span> bilginin yapısını inceleyen, doğru ile yanlış arasındaki akıl yürütmenin ayrımını yapan disiplin

Mantık ya da eseme, bilginin yapısını inceleyen, doğru ile yanlış arasındaki akıl yürütmenin ayrımını yapan disiplindir, doğru düşüncenin aletidir. Önceleri bir felsefe dalıyken daha sonra kendi başına bir ihtisas alanı olmuştur. Matematik ve bilgisayar biliminin de parçası haline gelmiştir. Bir disiplin olarak Aristoteles tarafından kurulmuştur. Aristoteles'den etkilenen Farabi tarafından iki kısımda kategorize edilmiştir. İbn-i Sina geçicilik ve içerme arasındaki ilişkiyi geliştirmiştir. Çağdaş zamanlarda Frege, Russell ve Wittgenstein önemli katkılar yapmıştır.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

Elektrokimya, kimya biliminin bir alt dalı olup elektronik bir iletken ile iyonik bir iletken (elektrolit) arayüzeyinde gerçekleşen reaksiyonları inceler. Elektrokimyada amaç kimyasal enerji ve elektrik enerjisi arasındaki değişimi incelemektir.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

De Morgan yasası, türetilmiş çözümleme kuralları tümel evetleme ve tikel evetleme biçiminde olmayan önermeleri dönüştürmek için kullanılan teorem. 19. yüzyıl matematikçisi Augustus De Morgan tarafından formüle edilmiştir.

SAT problemi bir NP-tam sınıfı problemidir.

3SAT ve KLIK problemleri, Turing makinasından polinom zamanda kararlaştırılabilen NP problemleri arasında yer alır. Bu problemlerin birbirinin cinsine çevrilmesine indirgeme denilir.

Berber paradoksu, Russel paradoksundan türetilmiş bir bulmacadır. Bizzat Bertrand Russell tarafından paradoksu örneklemek için kullanılmıştır. Fakat bu örneği kendisine öneren isimsiz bir kişiye atfetmiştir.

Doğruluk tablosu, mantıkta, özellikle Boole cebiri ve Boole fonksiyonları ile ilişkili olarak, fonksiyon değişkenlerinin bütün kombinasyonları için mantıksal ifadenin değerini hesaplamakta kullanılan bir matematiksel tablo.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

<span class="mw-page-title-main">Tümevarımlı mantık programlama</span>

Tümevarımlı mantık programlama (TMP) bilginin mantık programlama ile ifade edildiği bir makine öğrenmesi yöntemidir. Mantıksal olgulardan oluşan artalan bilgisi ve gözlemler kümesini içeren bir veritabanı verildiğinde, ILP sistemi tüm olumlu gözlemleri gerektiren ve olumsuz gözlemlerin hiçbirini gerektirmeyen bir hipotez üretir.

Mantıkta ve matematikte, bir doğruluk değeri ya da mantıksal değer, bir önermenin doğruluk ile ilişkisini belirleyen bir değerdir.

Mantıkta, bir cümle sonlu sayıda terimden oluşan bir ifadedir. En yaygın şekliyle ayrılma ile bağlanmış bir cümlenin içindeki terimlerden herhangi biri doğru olduğunda cümle de doğrudur. Çok yaygın olmayan birleşme ile bağlanmış bir cümlenin doğru olması için içerdiği terimlerin hepsi doğru olmalıdır. Kullanılan bağlaca göre, bir cümle sonlu terimlerin ayrışımı ya da sonlu terimlerin birleşimi olarak tanımlanır. Mantık cümleleri, terimleri için, genellikle aşağıdaki şekilde ifade edilir:

Önermeler mantığı, mantığın önermelerle ilgilenen dalıdır. Birden fazla önermenin mantık bağlaçları kullanılarak bir araya getirilmesiyle oluşturulan yeni önermelerin doğruluğunun belirlenmesi için kullanılır. Önermeler mantığının niceleyiciler, eşitlik ve ait olma ilişkileriyle genişletilmesi birinci-derece mantığın konusudur.

Sonculun kabulü ya da gerek ve yeterliğin birbirine karıştırılması, doğru bir koşullu ifadeyi alıp, doğru olmayacağı olarak karşıtını çıkarsama yanılgısıdır.

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.

Gödel'in ontolojik kanıtı, matematikçi Kurt Gödel'in (1906–1978) Tanrı'nın varlığına ilişkin bir kanıtıdır. Bu iddianın kaynağı ise Anselmus'a (1033-1109) kadar uzanır. Anselmus'un ontolojik argümanı en kısa haliyle: "Tanrı, tanımı gereği, kendisinden daha büyüğü tasavvur edilemeyecek olandır. Tanrı idrak edilir. Eğer Tanrı idrak ediliyorsa, O'nun gerçeklikte var olmasının O'nu daha büyük kılacağını da idrak edebiliriz. Bu nedenle Tanrı'nın var olması gerekir."