İçeriğe atla

Magnetostatik

Magnetostatik, Akımın sabit olduğu sistemlerdeki Manyetik alanlar üzerine çalışan bir alandır. Yüklerin sabit olduğu Elektrostatikin bir manyetik analoğudur. Mıknatıslanma, statik olmak zorunda değildir. Magnetostatik eşitlikleri, nanosaniyede ya da daha kısa sürede manyetik cereyanları tahmin etmek için kullanılabilir. Magnetostatik, akımlar sabit olmadığında bile yeterince iyi bir yaklaşımdır. Akımların sürekli değişmemesi gerekir. Magnetostatik, mikro manyetiğin çok kullanılan bir uygulamasıdır. Manyetik kayıt cihazları gibi.

Uygulamaları

Mangnetostatik, Maxwell denklemlerinin özel bir durumudur.

Maxwell denklemlerinden başlayarak ve yüklerin sabit ya da sabit bir akım ile  haraketli olabileceği kabul edilerek, eşitlikler Elektriksel alan ve Manyetik alan olarak ikiye ayrılır.[1] Alanlar zamandan ve birbirlerinden bağımsızdır. Magnetostatik eşitlikler, aşağıdaki tabloda integral ve diferansiyel formda gösterilmiştir.

Name Partial differential form Integral form
Gauss's law for magnetism:
Ampère's law:

∇, ıraklaşma miktarı, B, manyetik akının yoğunluğudur. İlk integral, s yüzeyinin tamamı, ds ise s yüzeyindeki küçük bir elementin boyutlarıdır. ikinci integral J, akım yoğunluğu, H manyetik alanının yoğunluğudur. Kapalı bir düğüm c'nin etrafındaki integraldir, satır elementi ı'dır.

Maxwell denklemlerinin tam halleri ile yukarıdaki eşitliklerin karşılaştırılması ve kaldırılan terimlerin önemi de düşünülerek, bu yaklaşımın doğruluğu ve kalitesi tahmin edilebilir.

Faraday Yasası'nn Tekrar Tanıtımı

Magnostatik problemleri çözmek için kullanılan yaygın bir teknikte artan zaman adımlarıdır ve bu teknik dB/dt ' ye yaklaşmak için kullanılır. Bu sonucu Faraday Yasalarına uygulamak, E (daha önceden bahsedilmişti ) için bir değer buldurur. Yavaşça değişen alanlar için bu çözüm iyi bir yaklaşım sağlasa da, Maxwell eşitlikleri için doğru bir metot değildir.

Manyetik Alan İçin Çözüm

Akım Kaynakları

Eğer bir sistemdeki tüm akım değerleri biliniyorsa, (örneğin akım yoğunluğunun tüm tanımı ) Biot-savart yasası ile, manyetik alan, akımlar kullanılarak bulunabilir:

Bu teknik orta karar bir vakumun veya göreli geçirgenliği 1 olan materyallere benzer materyallerin olduğu yerlerde oluşan problemleri çözerken işe yarar. Bu hava- çekirdek indikatörlerini ve hava-çekirdek transformatörlerini de kapsar. Bu tekniğin bir avantajı, bir bobin eğer karmaşık bir geometriye sahipse, bölümlere bölünebilir ve her bir bölüm için integral uygulanabilir. Genelde bu eşitlik, lineer problemleri çözmek için kullanılır. Farklı durumlar da bunlara dahil edilebilir. Numerik entegrasyon, çok zor bir geometri için kullanılabilir.

Baskın manyetik materyalin, küçük hava aralıklarına göre oldukça yüksek geçirgenlikte manyetik çekirdeğe sahip olduğu problemler için, manyetik çember yaklaşımı yararlı olacaktır. Manyetik çember uzunluğuna nazaran hava aralıkları daha büyükse, saçaklar o denli belirgin olur ve genelde, hesaplama için sonsuz sayıda element gerekir. Sonsuz sayıda element hesaplaması, yukarıdaki formüllerin modifiyeli halini kullanır. Böylece manyetik potansiyel hesaplanır. B değeri manyetik potansiyelden bulunabilir.

Vektör potansiyelinden, manyetik alan türetilebilir. Manyetik alanın ıraksanmasının yoğunluğu sıfır olduğu için,

ve vektör potansel akımı ile ilişkisi ;

Mıknatıslama

Kuvvetli manyetik materyaller, (Ferromanyetik, Feramanyetik veya Paramanyetiklik ) elektron spinleriden kaynaklanan bir mıknatıslanmaya sahiplerdir. Bu tarz materyallerde mıknatıslanma aşağıdaki eşitlik kullanılarak açıkça ifade edilebilir ;

Metaller hariç, elektrik akımları yok sayılabilir. Böylece Ampère yasası kısaca ;

Genel çözüm ;

skaler potansiyeldir. Bunu Gauss yasasında yerine koyarsak,

Bu nedenle mıknatıslanmanın ıraksaması,   elektrostatikteki elektrik yüklerinin analojisinde bir role sahiptir ve genelde yük yoğunluğu  olarak gösterilir.

Vektör potansiyel metodu aynı zamanda akım yoğunluğu ile de istihdam edilebilir

Dolayısıyla, mıknatıslanmanın diverjansı , elektrostatikteki elektriksel yükle aynı role sahiptir.[2]

Ayrıca bakınız

  • Darwin Lagrangian

Notlar

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Gauss yasası</span>

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

<span class="mw-page-title-main">Mıknatıslanma</span>

Mıknatıslanma ya da mıknatıslanma vektörü bir maddenin manyetik durumunu belirten niceliktir. Bu vektörün büyüklüğü, maddenin birim hacminin net manyetik momentine eşittir. Mıknatıslanmanın ve madde içindeki manyetizmanın kaynağı elektronların yörüngedeki hareketleridir. Mıknatıslanma vektörü M harfi ile gösterilir.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

<span class="mw-page-title-main">Sicim kozmolojisi</span>

Sicim kozmolojisi, ilk kozmolojinin sorularını sicim kuramındaki eşitlikleri uygulayarak çözmeye çalışan yeni bir alandır.Çalışmaların bağlantılı bölgesi brane kozmolojisidir. Bu yaklaşım sicim kuramının şişme kozmolojik modelinden türetilebilir, bu sayede ilk büyük patlama senaryolarına kapı açılmıştır. Fikir, eğimli bir arka planda bozonik sicim özelliği ile bağlantılıdır, düzgün olmayan sigma modeli olarak bilinir. Bu modelin ilk işlemleri beta işlevi olarak gösterilir, modelin sürekli ölçünü bir enerji düzeyinin işlevi olarak nitelendirir, Ricci tensörü ile orantılı olmakla birlikte Ricci akışına da mahal vermiştir. Bu model konformal değişmeze sahip olduğundan mantıklı bir kuantum alan kuramı olarak tutulmalı, beta işlevi ise ardından, hemen sıfır üreten Einstein alan eşitliği olmalıdır. Einstein’ın eşitlikleri bir şekilde yersiz görünse de, bu sonuç kesinlikle iki-boyutlu modelin daha fazla boyutlu fizik üretebileceğini göstermesi açısından dikkat çekicidir. Buradaki ilgi çekici nokta ise sicim kuramı gereksinim olmasa da düz bir arka plandaki tutarlıkla 26 boyut olarak formulize edilebilir. Bu Einstein’ın eşitliklerinin altında yatan fiziğin konformal alan kuramı ile açıklanabileceğine dair ciddi bir ipucudur. Aslında, bu sicim kozmolojisi için şişmeci bir evrene sahip olduğumuza dair bir kanıtımız olduğuna işarettir.Evrenin evriminde, şişme evresinden sonra, bugün gözlemlenen genişleme Firedmann eşitliklerinde tam anlamıyla tanımlanmıştır. İki farklı evre arasında pürüzsüz bir geçiş beklenir. Sicim kozmolojisi, geçişi açıklamakta zorluk çeker. Bu sözlükte zarif çıkış problemi olarak bilinir. Şişmeci kozmoloji skaler alanın varlığının şişmeyi zorladığını ima eder. Sicim kozmolojisinde bu durum dilaton alanına mahal verir.. Bu skaler ifade, düşük enerjilerin efektif kuramı olan skaler alanın bozonik sicimin tanımına girer. Bu eşitlikler Brans-Dicke kuramındakilere benzer. Nicel çözümlenimler boyutların kritik sayısını, (26), dörde düşürmeye çalışır. Genel olarak, Friedmann eşitliklerinden rastgele sayıda boyut elde edilebilir. Başka bir durum ise boyutların kesin sayısı etkili dört boyut kuramı ile çalışarak sıkıştırılmış evrenleri üretir. Sıkıştırılmış boyutlarda skaler alanların oluştuğu Kaluza-Klein kuramı buna bir örnektir. Bu alanlara modili denir.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

<span class="mw-page-title-main">Gauss yüzeyi</span>

Gauss yüzeyi, üç boyutlu uzayda içinden bir vektör alanın akısı geçen kapalı bir yüzeydir; genellikle elektrik alanı, yerçekim alanı ve manyetik alanı bulmak için kullanılır. rastgele seçilmiş bu kapalı yüzey S = ∂V Gauss yasasıyla ilişkili alan için conjuction olarak bir yüzey integrali sergilenerek kullanılır. Elektrostatik alanın kaynağı olarak elektrik yükünün miktarı ya da yerçekimi alanını kaynağı olarak yerçekimi ağırlığını kapalı alanda hesaplamak için kullanılır. Maddesel olması için, elektrik alan bu metinde, alanın en sık bilinen yüzey şekli olarak tanımlandırıldı. Gauss yüzeyleri genellikle, yüzey integralinin simetrisini basitçe hesaplayabilmek için dikkatle seçildi. Bir Gauss yüzeyi, yüzey üzerindeki her noktanın elektrik alan bileşenleri için, sabit bir normal vektörüne doğru seçilmiş ise, hesaplama zor bir integral gerektirmeyecektir.

Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.