İçeriğe atla

Magma odası

11: Magma odacığı

Magma odası veya odacığı, Dünya'nın yüzeyinin altında yer alan akışkan bir kayaç göletidir. Böyle bir odadaki erimiş kayaç ya da magma büyük bir basınç altındadır ve bir müddet sonra bu basınç, çevresindeki kayacı kademeli olarak parçalara, magmanın yukarı doğru hareket etmesine yol açar. Yüzeye doğru yol bulursa olay, volkanik bir patlama ile sonuçlanır; dolayısıyla birçok volkan, magma odaları üzerinde yer almaktadır. Bu odacıkların Dünya'nın derinlerinde bulunması zordur ve bu nedenle bilinenlerden çoğu yüzeye yakın, genellikle 1 km ila 10 km aşağıda yer alır. Magma odaları, okyanus ortası sırtlarındaki, sıcaklık dağılımını ve okyanus kabuğu oluşumunu denetleyen önemli bileşenler olarak bilinmektedirler.[1]

Her volkanın farklı bir geçmişi, dolayısıyla da farklı bir yapısı oluşmaktadır. Bazı volkanlar, lav boşalımlarının baskınlığında oluşurken bazıları patlatmalı gelişmiştir. Oluşumlarına neden olan magma odası derinliği, boyutu, biçimi de volkanı özgün kılar.[2] Volkanik bölgelerde magma odalarının varlığı, dalga hızlarında önemli değişime sebep olmaktadır. Örneğin, kabuk ve üst mantoda yer alan magma odaları veya kısmen eriyik kayaç kütleleri, çevresine göre nispeten düşük hızlara sahiptirler.[2]

Dünyada elektrik üretimindeki jeotermal sahaların en az %60'ının etkin ya da genç volkanlar ile ilintili olduğu düşünülmektedir. Bunların çoğunun son püskürmesi son 100 bin yıllık süre içinde gerçekleşmiş ve yine çoğunun magma odası hacmi 100 km3 ila 10 bin km3 arasındadır. Daha büyük magma odalarına sahip volkanik alanların, biraz daha yaşlı olanlarında bile önemli bir ısı anomalisinin halen varlığını sürdürdüğü ve buralarda da jeotermal sistemlerin bulunabildiği bilinmektedir.[3]

Magma odalarının dinamiği

Yiten bir plakanın üzerindeki magma odaları
Yellow Stone'da yer alan magma odası

Magma, çevreleyen kayadan daha az yoğun olduğu için kabuğun altından ve üstünden gelen çatlaklardan yükselir. Magma yukarı doğru bir yol bulamadığında, bir magma odasına toplanır. Bu odalar genellikle zamanla[4][5] ardışık yatay[6] veya dikey[7] magma enjeksiyonları ile oluşturulur. Yeni magmanın akışı, önceden var olan kristallerin[8] reaksiyona(Tepkime) girmesine ve odadaki basıncın artmasına neden olur. Yerleşik magma soğumaya başlar ve olivin gibi erime noktası yüksek bileşenlerin çözeltiden, özellikle odanın daha soğuk duvarlarının yakınında kristalize olması ve batan daha yoğun bir mineral kümesini (kümülatif kaya) oluşturması ile başlar.[9] Soğuduktan sonra, yeni mineral fazla doyurulur ve kaya tipi değişir (örneğin, fraksiyonel kristalizasyon), tipik olarak (1) gabro, diyorit, tonalit ve granit veya (2) gabro, diyorit, siyenit ve granit oluşturur. Magma uzun bir süre bir haznede kalırsa, daha düşük yoğunluklu bileşenlerin tepeye yükselmesi ve daha yoğun malzemelerin batmasıyla katmanlaşabilir. Kayalar katmanlar halinde birikerek katmanlı bir patlama oluşturur.[10] Sonraki herhangi bir patlama, belirgin şekilde tabakalı tortular oluşturabilir; örneğin, Vezüv Yanardağı'nın MS 79 patlamasından kaynaklanan tortular, daha sonra odanın altından püsküren malzemeden üretilen benzer bir gri süngertaşı tabakası ile örtülmüş magma odasının üst kısmından kalın bir beyaz süngertaşı tabakası içerir. Bölmenin soğutulmasının bir başka etkisi, katılaşan kristallerin, sıvı haldeyken önceden çözünmüş gazı (esas olarak buhar) serbest bırakmasıdır, bu da bölmedeki basıncın muhtemelen bir püskürme üretmeye yetecek kadar yükselmesine neden olur. Ek olarak, daha düşük erime noktası bileşenlerinin uzaklaştırılması, magmayı daha viskoz hale getirme eğiliminde olacaktır (silikatların konsantrasyonunu artırarak). Bu nedenle, bir magma odasının katmanlaşması, odanın tepesine yakın magma içindeki gaz miktarında bir artışa neden olabilir ve ayrıca bu magmayı daha viskoz hale getirerek, potansiyel olarak odanın olacağından daha patlayıcı bir püskürmeye yol açabilir. tabakalaşmaz.

Süper yanardağ patlamaları, kabukta nispeten sığ bir seviyede olağanüstü derecede büyük bir magma odası oluştuğunda mümkündür. Ancak, süper yanardağ üreten tektonik ortamlarda magma üretimi oranı oldukça düşüktür, yaklaşık 0,002 km3 yıl-1'dir, bu nedenle bir süper patlama için yeterli magmanın birikmesi 105 ila 106 yıl sürer. Bu, yüzen silisli magmanın nispeten küçük püskürmelerde neden daha sık yüzeye çıkmadığı sorusunu gündeme getirmektedir. Bölme çatısında ulaşılabilen maksimum aşırı basıncı düşüren bölgesel genişleme ile yüksek etkili viskoziteye sahip sıcak duvarlı büyük bir magma odası kombinasyonu riyolit kanal oluşumunu bastırabilir ve bu tür büyük odaların magma ile dolmasına izin verebilir.[11]

Magma, volkanik bir püskürme ile yüzeye çıkarılmazsa, örneğin granit veya gabrodan oluşan, müdahaleci bir magmatik cisim oluşturmak için derinlikte yavaşça soğuyacak ve kristalleşecektir.

Çoğu zaman, bir yanardağın kilometrelerce aşağısında, zirveye yakın sığ bir oda sağlayan derin bir magma odası olabilir. Magma odalarının konumu sismoloji kullanılarak haritalanabilir: Depremlerden kaynaklanan sismik dalgalar sıvı kayalarda katıya göre daha yavaş hareket eder ve ölçümlerin magma odalarını tanımlayan yavaş hareket bölgelerini belirlemesine olanak tanır.[12]

Bir yanardağ patladığında, çevredeki kaya boşaltma odasına çökecek. Odanın boyutu önemli ölçüde küçülürse, yüzeyde ortaya çıkan çöküntü bir kaldera oluşturabilir.[13]

Ayrıca bakınız

  • Mogi Modeli

Kaynakça

  1. ^ "Magma Odalı Yavaş Yayılan Okyanus Ortası Sırtlarda Isı Modellemesi" (PDF). Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülten. 8 Ocak 2013 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 3 Şubat 2017. 
  2. ^ a b "VOLKANİZMA VE JEOFİZİK" (PDF). Doğal Kay. ve Eko. Bülteni. 3 Şubat 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 3 Şubat 2017. 
  3. ^ "TÜRKİYE'DEKİ GENÇ VOLKANLAR VE JEOTERMAL KAYNAKLAR" (PDF). X. ULUSAL TESİSAT MÜHENDİSLİĞİ KONGRESİ. 3 Şubat 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 3 Şubat 2017. 
  4. ^ Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., Taylor, Z. (2004). "Are plutons assembled over millions of years by amalgamation from small magma chambers?". GSA Today. 14 (4/5): 4–11. doi:10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2
  5. ^ Leuthold, Julien (2012). "Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia)". Earth and Planetary Science Letters. 325–326: 85–92. doi:10.1016/j.epsl.2012.01.032.
  6. ^ Leuthold, Julien; Müntener, Othmar; Baumgartner, Lukas; Putlitz, Benita (2014). "Petrological constraints on the recycling of mafic crystal
  7. ^ Allibon, J., Ovtcharova, M., Bussy, F., Cosca, M., Schaltegger, U., Bussien, D., Lewin, E. (2011). "The lifetime of an ocean island volcano feeder zone: constraints from U–Pb on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations (Fuerteventura, Canary Islands)". Can. J. Earth Sci. 48 (2): 567–592. doi:10.1139/E10-032.
  8. ^ Leuthold J, Blundy JD, Holness MB, Sides R (2014). "Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)". Contrib Mineral Petrol. 167: 1021. doi:10.1007/s00410-014-1021-7. S2CID 129584032.
  9. ^ Emeleus, C. H.; Troll, V. R. (2014-08-01). "The Rum Igneous Centre, Scotland". Mineralogical Magazine. 78 (4): 805–839. doi:10.1180/minmag.2014.078.4.04. ISSN 0026-461X.
  10. ^ McBirney AR (1996). "The Skaergaard intrusion". In Cawthorn RG (ed.). Layered intrusions. Developments in petrology. 15. pp. 147–180. ISBN 9780080535401.
  11. ^ Jellinek, A. Mark; DePaolo, Donald J. (1 July 2003). "A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions". Bulletin of Volcanology. 65 (5): 363–381. doi:10.1007/s00445-003-0277-y. S2CID 44581563.
  12. ^ Cashman, K. V.; Sparks, R. S. J. (2013). "How volcanoes work: a 25 year perspective". Geological Society of America Bulletin. 125 (5–6): 664. doi:10.1130/B30720.1.
  13. ^ Troll, Valentin R.; Emeleus, C. Henry; Donaldson, Colin H. (2000-11-01). "Caldera formation in the Rum Central Igneous Complex, Scotland". Bulletin of Volcanology. 62 (4): 301–317. doi:10.1007/s004450000099. ISSN 1432-0819.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yanardağ</span> Magmanın yer içinden yüzeye çıktığı veya geçmişte çıkmış olduğu, genellikle koni biçiminde, tepesinde bir püskürme ağzı bulunan dağ

Yanardağ ya da volkanik dağ, magmanın yeryüzünden dışarı püskürerek çıktığı coğrafi yer şekilleridir. Güneş Sistemi'nde bulunan kayalık gezegen ve uydularda birçok yanardağ olmasına rağmen, bu olgu, en azından Dünya'da, genellikle tektonik plaka sınırlarında görülür. Ne var ki, sıcak nokta yanardağlarında önemli istisnalar vardır. Yanardağların araştırıldığı bilim dalına volkanoloji denir.

<span class="mw-page-title-main">Granit</span>

Granit, sert, kristal yapılı minerallerden meydana gelen tane görünüşlü magmatik felsik müdahaleci magmatik bir kaya türüdür. Granit kelimesi, tamamen kristalli bir kayanın kaba taneli yapısında bulunan Latince granumdan gelir. Plüton içindeki taneler çoğunlukla gözle görülebilir büyüklüktedir. Feldispatın esas mineralleri ortoklas cinsi ile az miktarda plajioklas ve kuvarstır. Ayrıca mika, hornblend, piroksen ve ikinci gruba giren turmalin, apatit, zirkon, grena, manyetit gibi mineraller de bulunabilir. Ancak genellikle "granit" terimi daha geniş bir yelpazede ifade etmek için kullanılır.

<span class="mw-page-title-main">Fümerol</span>

Fümerol, çoğunlukla yer kabuğu sıcaklığının çok yüksek olduğu, yakın dönemde etkin yanardağların yer aldığı bölgelerde, karbondioksit, kükürt dioksit, hidrojen klorür ve hidrojen sülfür gibi gazların, buhar şeklinde salındığı, yer kabuğundaki açıklıklardır (ağızlar). Püskürmelerin öncesinde, püskürme sırasında ya da püskürtmeden sonra, lavların her zaman krater merkezinden itibaren yayılmadığı durumlarda ortaya çıkarlar.

<span class="mw-page-title-main">Kaldera</span>

Kaldera, volkanik patlama sonucu toprağın çökmesiyle oluşmuş volkanik yer şekli. Bazen volkanik kraterlerle karıştırılmaktadır. Kelime, İspanyolcada ‘caldera’ ve Latincede ‘calderia’ denilen 'pişirilmiş çömlek' anlamına gelmektedir.

<span class="mw-page-title-main">Bazalt</span>

Bazalt, volkanik kaya kütlelerinden biri. Siyah renkte ve kesif yığınlar halindedir. Doğada kütle, damar ve akıntı halinde bulunur. Başlıca özelliklerinden birisi, altıgen prizmalar biçiminde, büyük sütunlar meydana getirmesidir. Bu sütunlar, mağma akıntılarının soğuyup büzülmesinden ileri gelmiştir. Sert ve dayanıklı bir taş olduğundan kaldırım, yapı taş, demiryolu, köprü malzemesi olarak kullanılır. Yeryüzünde çok bol olan bazalt, bazı memleketlerde, binlerce kilometrekarelik yerleri örter. Birleşik Krallık'ın kuzeyi, İrlanda, Almanya ve Amerika Birleşik Devletleri'nde büyük Hindistan'da Dekkan bölgesindeki bazalt yığınları 300.000 kilometrekarelik geniş bir bölgeyi kaplar.

<span class="mw-page-title-main">Stratovolkan</span> lav, tüf ve kül tabakasından oluşmuş, yüksek, konik biçimli bir volkan

Stratovolkan, pek çok sertleşmiş lav, tüf ve kül tabakasından oluşmuş, yüksek, konik biçimli bir volkandır. Bu volkanlar dik yamaçlarıyla ve periyodik patlamalarıyla tanınırlar. Bunlardan fışkıran lavın akışkanlığı azdır ve çok uzağa yayılmadan önce soğur ve sertleşir. Magmaları asidik ya da yüksek-orta düzeyde silika içeriklidir. Buna karşın bazik içerikli magmanın akışkanlığı yüksektir ve Hawaii'deki kalkan biçimli Mauna Loa dağı gibi yayvan dağları oluşturur. Pek çok stratovolkanın yüksekliği 2500 metreden fazladır. Türkiye'den Ağrı Dağı ve Nemrut Dağı birer stratovolkan tipindeki volkanlardır.

<span class="mw-page-title-main">Lav</span> yanardağ patlamasıyla çıkan erimiş kaya parçaları

Lav ya da püskürtü, yanardağ patlaması sırasında çıkan çok sıcak, sıvı ve akıcı erimiş maddeye denilmektedir. Yanardağ ağzından ilk çıktığında sıvı halde bulunmaktadır. Lavın sıcaklığı "700 °C "ile "1200 °C" arasında değişmektedir.

<span class="mw-page-title-main">Magma</span> yeraltında bulunan, erimiş haldeki kayaçlar

Magma, yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında erimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir. Magma, dünya yüzeyinin altında bulunur ve diğer karasal gezegenlerde ve bazı doğal uydularda da magmatizmanın kanıtı keşfedilmiştir. Erimiş kayanın yanı sıra, magma ayrıca kristaller ve volkanik gazlar içerebilir.

<span class="mw-page-title-main">Deniz altı volkanları</span>

Deniz altı volkanları, yeryüzünün denizlerle örtülü olduğu bölgelerinde bulunan yarıklardır. Yer altından gelen lavlar bu yarıklar sayesinde yüzeye çıkarlar. Dünya üzerine bir yılda yer altından gelen lavların %75 kadarını bu tür yarıklardan gelenler oluşturur. Çıkan malzemelerin büyük çoğunluğu tektonik hareketlerin yoğun olarak görüldüğü Orta Atlantik Yükselimi olarak da adlandırılan kıta levhalarının bulunduğu bölgelerde gerçekleşir. Pek çoğu okyanusların derin bölgelerinde olmasına karşın, bir bölümü de sığ sularda görülür. Bu tür durumlarda birikerek yükselen malzeme, küçük adacıklar oluşturabilir.

<span class="mw-page-title-main">Magmatik kayaçlar</span> Magmanın yeryüzüne çıkarken soğumasıyla meydana gelen kayaçlardır.

Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. Magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.

<span class="mw-page-title-main">Volkanizma</span>

Volkanizma, erimiş kayalardan oluşan magmanın sırf gazdan oluşmayan bir gök cisminin yüzeyine magma ve gazın yüzeydeki çatlak ya da yanardağ ağzından yüzeye çıkması fenomenindir. Gök cisminin kabuğu veya mantosu magmadan kaynaklanan veya onu oluşturarak yüzeye çıkana kadar olan bütünü kapsar.

<span class="mw-page-title-main">Volkan kemeri</span>

Volkan kemeri. Stratovolkan, aynı zamanda kompozit volkan olarak da bilinir, uzun boylu konik volkan birçok lav, tefra, pamis ve volkanik kül katmanları tarafından sertleşerek inşa edilmiştir. Kalkan volkanların aksine strato volkanlar ve dik profilleri ve periyodik patlamalı püskürmeler ile karakterize edilirler. Bazı çökmüş kraterler ile kalderalarda bu şekilde adlandırılır. Genellikle stratovolkanlar yüksek viskoziteden dolayı uzağa yayılmadan önce soğur ve katılaşırlar. Bu lav oluşturan magma daha az bir miktarda viskoz mafic magma ile yüksek-orta derecede silika içermektedir. Geniş felsik, lav akıntıları nadirdir,15 km (9,3 mi) kadardır. Stratovolkanlar erüptif malzemelerin sıralı dökülmeleri itibaren inşa edilen kendi kompozit yapısı nedeniyle bazen “kompozit volkan” da denir. Onlar daha az yaygın olan kalkan volkanların aksine volkan tipleri arasında en yaygın olanlardandır. İki önemli Stratovolkan olan Krakatoa en iyi bilineni ve Vezüv 1883'teki patlama Pompei ve Herculaneum kasabalarnı önemli oranda tahrip etti. Aynı zamanda bu patlama binlerce kişinin ölümüne sebep olmuştur.

<span class="mw-page-title-main">Tüf</span>

Tüf, bir volkanik patlama sonucu ortaya çıkan volkanik küllerden oluşan kaya türüdür. Tüf kimi zamanlarda inşaat malzemesi olarak kullanılan farklı bir kaya anlamına da gelir. %50’den daha fazla tüf içeren kayalar tüflü olarak kabul edilir. Tüf tortul veya magmatik kayaçlar olarak sınıflandırılabilir. Sedimantolojik terimler ile açıklanmasına rağmen magmatik petroloji bağlamında incelenmektedir.

Volkanik yay. Adalar dizisi (yayı); çoğunlukla birbirine yaklaşan iki tektonik plaka arasında bulunan sınıra, paralel ve yakın olarak konumlanan, yay şeklinde hizalanmış, volkan zincirlerinden oluşan takımada, yani içinde çok ada olan bir deniz türüdür. Volkanik yay ada yayının alt başlığı altında incelenmektedir. Kısmen deniz seviyesinin altında olan ada yayları, tektonik olarak yay şeklindeki dağ kuşağını oluşturur. Aslında ada yayları, okyanusun altında kısmi olarak kalan bir dağ bendinde bulunan özel bir coğrafik-topoğrafik durumu simgeler. Bunların çoğu volkanlardan oluştuğu için volkanik ada yayları olarak da sınıflandırılabilir.

<span class="mw-page-title-main">Riyolit</span>

Riyolit, silis içeriği çok yüksek olan ekstrüzyonla üretilmiş magmatik bir kayaçtır. Riyolit, kuvarstan oluşur ve az miktarda hornblende ve biyotit içerir. Sıkıştırılmış gazlar genellikle kayada vig üretirler. Genellikle kristaller, opal veya camsı maddeler içerirler. Riyolit, plütonik granit kayaya göre eşdeğer olarak düşünülebilir ve sonuç olarak, riyolitin yüzeyleri de granite benzeyebilir.granitle kimyasal yapı yönünden aynı olan, serbest silisçe zengin, içinde mikrolitler bulunan kayaçtır. Riyolit, granitle aynı kimyasal yapıda olan camsı bir kütledir. İçinde mikrolitler olan kayaçtır.Mikrolit: Mezolitik Çağ'da insanların küçük boyuttaki aletlerinde kullandığı küçük taşlarla yapılmış aletlere minitaş anlamında mikrolit ismi verilmiştir. Eş anlamlısı Yüksek silika içeriği ve düşük demir ve magnezyum içeriği nedeniyle, riyolitik magmalar oldukça viskoz lavlar oluşturur. Granitin yüzey eşdeğeridir ve granit gibi başlıca açık renkli silikat minerallerinden oluşur. Bu mineralojik bileşim riyolitlerin boz ile pembe arasında, bazen de açık gri renkli olmasını sağlar. Riyolit ince taneli bir kayaçtır ve sıklıkla cam parçaları ve gaz boşlukları kapsar. Bu özellikler onun yüzey koşullarında hızlı soğuma ile oluştuklarına işaret etmektedir. Eğer riyolitler fenokristal içeriyorsa bunlar küçük boyutludur, kuvars veya potasyum feldispatlardan oluşur. Kabukta çok yaygın ve büyük magmatik gövdeler halinde bulunan granitlerin tersine riyolitler hem daha az yaygın hem de küçük hacimli kütleler halinde görülmektedir. Riyolit plütonik granit kaya ekstrüzyon eşdeğer olarak kabul edilebilir ve sonuç olarak, riyolit mostra granit bir benzerlik taşıyabilir. Yüksek silika içeriği ve düşük demir ve magnezyum içeriği nedeniyle, riyolitik magmalar oldukça viskoz lavlar oluşturur. Ayrıca breccias veya volkanik fişler ve pençeler olarak ortaya çıkar. Kristalleri büyütmek için çok hızlı soğuyan riyolitler, obsidyen olarak da adlandırılan doğal bir cam veya vitrophyre oluşturur. Daha yavaş soğutma, lavda mikroskobik kristaller oluşturur ve akış yaprakları, sferulitik, nodüler ve litofizal yapılar gibi dokularla sonuçlanır. Bazı riyolit oldukça veziküler pomza. Riyolitin birçok patlaması oldukça patlayıcıdır ve tortular serpinti tefra/tüf veya ıgnimbritlerden oluşabilir. Riyolit püskürmeleri, daha az felsik lavların püskürmelerine kıyasla nispeten nadirdir. 20.yüzyılın başından bu yana sadece üç riyolit patlaması kaydedildi: Papua Yeni Gine'deki St. Andrew Boğazı yanardağı, alaska'daki Novarupta yanardağı ve Güney Şili'deki Chaiten. Riyolit, karadan uzak adalarda bulunmuştur, ancak bu tür okyanus olayları nadirdir. Etimoloji ve tarih Riyolit Yunanca kelime ῤεῖν bir yenilikçilik, rheîn “akış” ve λίθος, líthos, “taş”dır. Kayanın bilimsel tanımı Baron Ferdinand von Richthofen tarafından 1860 yılında yapılmıştır. Mineral topluluğu genellikle kuvars, sanidin ve plajiyoklaz Bir riyolit başlıca kuvars ve feldispat oluşmaktadır. Kuvars içeriği muhtemelen Riyolitik eriyiğin kristalleşme ile meydana gelmeyecektir, sadece kaya takip eden zenginleştirme işlemlerinden ile % 50'den fazla bir kuvars paylarıyla, %20 ve %60 arasında değişmektedir. Kristal-fakir riyolitlerle için QAR ve kuvars-zengin tipleri, kısaltma QRR kısaltmasıdır. Kalan %40-80 ağırlıklı alkali feldspat %35-90,10 ve %65 plajiyoklaz ve tamamlayıcı arasındaki dar anlamda riyolit onlar için hesap feldspat oluşur. Daha fazla %65 plajiyoklaz riyodasit ile paylaşımın alkali riyolit, yani, fazla %90 alkali feldspat ile felsik volkanitler görülür. Buna ek olarak, bir riyolit küçük miktarlarda - genellikle en fazla %2, azami %15 - on mafik minerallerin. Riyodasitler tür hisselerin %20 fazla olabilir. Bu maddeler arasında sık sık biyotit oluşur, ancak ek olarak, aynı zamanda hornblendli veya ojit. Riyolit çok küçük miktarlarda gibi manyetit, hematit, kordiyerit, granat veya olivin gibi mineraller çoğunlukla hala içerirler. Kaldaklofsfjöll: Genellikle riyolit bir porfirik dokuya sahiptir. Bu çoğunlukla kuvars ve feldispat oluşmaktadır olan tek kristaller man fenokristalleri denilen dağınık büyük kristaller, sadece bir mikroskop altında görülebilen ve gömülü bir yoğun, ince taneli matrisi oluşur anlamına gelir ve boyutu birkaç santimetre birkaç milimetre. Ancak, Afirik veya felsitischen riyolitlerden sonra yani tamamen ince taneli herhangi Einsprengling olmadan riyolit, manspricht vardır. Kısmi de riyolit kayalar kolayca tanınabilir akış dokular gösterir. Genç jeolojik zamanda riyolit gaz kabarcıkları vardı. Bu boşluk kabarcıkları genellikle orada zaman içinde çökeldi. Bu boşluklar minerallerle dolduruldu. Obsidyenle aynı kimyasal bileşime sahip riyolit volkanik bir camdır.

<span class="mw-page-title-main">Volkan bacası</span>

Volkan bacası, magma odası ile yanardağın yüzeyi arasında kalan, magmanın yeryüzüne çıkmak için izlediği yola verilen ad.

<span class="mw-page-title-main">Volkanik kül</span> volkanik patlamalarla oluşan, 2 mm çapından küçük toz halindeki kayaç, mineraller ve volkanik cam parçaları

Volkanik kül, volkanik patlamalar sırasında meydana gelen 2 milimetre (0,079 in) çapından daha az olan toz halindeki kayaç, mineraller ve volkanik cam parçalarıdır. Volkanik kül terimi, genellikle, 2 mm'den büyük partiküller de dahil olmak üzere tüm patlayıcı maddeleri içine alabilecek şekilde kullanılır. Volkanik kül, magma içindeki çözünmüş gazlar genişlediğinde ve şiddetle atmosfere kaçtığında volkanik patlamalar sırasında oluşur. Sızan gazlar, magmayı parçalayarak volkanik kaya ve cam parçalarının katılaştığı atmosfere doğru iter. Kül aynı zamanda, freatomagmatik patlamalar sırasında magma suyla temasa girdiğinde ortaya çıkar ve suyun patlamayla buharlaşmasına neden olan magmanın parçalanmasına neden olur. Havaya çıktıktan sonra küller rüzgârla binlerce kilometre uzağa taşınır. Ayrıca yanardağ püskürmeleri sırasında, yanardağın üzerinde yer alan ince partiküller arasındaki sürtünmeden dolayı gök gürültüsü ve yıldırım da yaratabilir ya da yerden huni biçiminde yükselip atmosfere karışarak rüzgâr altında gittikçe büyüyen kül bulutları oluşabilir.

<span class="mw-page-title-main">Püskürük kayaç</span> Dünyanın iç kısmındaki kızgın maddelerin (magmanın) yer kabuğu içine sokulması ya da yeryüzüne püskürerek lav, kül

Ekstrüzif, katılaşım veya püskürük kayaç, Dünya'nın iç kısmındaki kızgın maddelerin (magmanın) yer kabuğu içine sokulması ya da yeryüzüne püskürerek lav, kül vb. maddelerin yığılması ve soğuması sonucunda oluşmuş kayaçlardır. Bu kayaçlar hızlı soğuma nedeniyle ince kristallidirler. Soğuma, ince kristallerin bile meydana gelmesine olanak tanımayacak kadar hızla olursa volkanik cam oluşur.

İç püskürük kayaçlar, mantodan kök alan magmanın yavaş soğumasıyla oluşan bir kayaç türüdür. Magmatik kayaçlar genel olarak 3 başlık altında sınıflandırılırlar. İç püskürük, dış püskürük ve yarı derinlik kayaları. Magmanın kompozisyonu veya başka bir sebepten ötürü yüzeye olan uzaklıklarına göre farklı soğuma şekilleri gösterdikleri için her biri farklı karakteristikler göstererek kayaç oluştururlar.

<span class="mw-page-title-main">Büyük magmatik bölge</span> magmatik bölge

Büyük magmatik bölge, magmanın kabuktan yüzeye doğru hareket ettiğinde ortaya çıkan, müdahaleci ve ekstrüzyonlu dahil olmak üzere son derece büyük bir magmatik kayaçlar birikimidir. Büyük magmatik bölgelerin oluşumu, manto yükselmeleri veya farklı levha tektoniği ile ilişkili süreçlere çeşitli şekillerde atfedilir. Son 500 milyon yılda bazı bölgelerin oluşumu, nedensel ilişkiler hakkında sayısız hipoteze yol açan kitlesel yok oluşlar ve hızlı iklim değişikliklerileri ile zaman içinde çakışmaktadır. Bölgeler günümüzde aktif olan diğer volkanlardan veya volkanik sistemlerden temel olarak farklıdır.