İçeriğe atla

Magma

Lav akıntısı

Magma, yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında erimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir. Magma, dünya yüzeyinin altında bulunur ve diğer karasal gezegenlerde ve bazı doğal uydularda da magmatizmanın kanıtı keşfedilmiştir.[1] Erimiş kayanın yanı sıra, magma ayrıca kristaller ve volkanik gazlar içerebilir.[2]

Magma, yitim bölgeleri, kıtasal yarık bölgeleri, orta okyanus sırtları ve sıcak noktalar dahil olmak üzere çeşitli tektonik ortamlarda manto veya kabuğun erimesi ile üretilir.[3] Manto ve kabuk eriyikleri, magma odalarında[4] veya trans-kabuk kristal zengini lapa zonlarında depolandıkları düşünülen kabuktan yukarı doğru hareket ederler.[5] Kabukta depolanmaları sırasında, magma bileşimleri fraksiyonel kristalizasyon, kabuk eriyikleri ile kontaminasyon, magma karıştırma ve gaz giderme yoluyla değiştirilebilir.

Magma çalışması tarihsel olarak lav akışları şeklinde magmayı gözlemlemeye dayanırken, jeotermal sondaj projeleri sırasında İzlanda'da iki kez ve Hawaii'de bir kez olmak üzere toplam üç kez yerinde görülmüştür.[6][7][8]

Magmanın katılaşmasıyla magmatik kayaçlar oluşur. Üç tür magmatik kayaç vardır. Bunlar derinlik, yarı derinlik ve yüzey kayaçlarıdır.

Eğer magma derinlerde soğursa iri kristaller oluşur. Derinlerde magma ile ortam arasındaki ısı farkı azdır. Çünkü derinlere inildikçe yerin ısısı artar. (Jeotermal gradyan -1 km'de 33 °C) magma ile ortam arasında ısı farkı az olduğu için iri kristaller oluşur. Derinlik kayaçları tamamen iri kristallerden oluşur. Ve kristaller yaklaşık eş boyutludur.

Magma yarı derinlikte soğursa hem iri hem de küçük kristaller oluşur. Yarı derinlik kayaçları, başka bir deyişle damar kayaçları tamamen kristalli ve kristaller iki farklı tane boyutundadır.

Magma yüzeyde soğursa tamamen kristalli bir kayaç oluşmaz. Bunun nedeni yüzeyde magma ile ortam arasındaki ısı farkı fazla olması ve buna bağlı olarak magmanın hızlı soğumasıdır.

Magmanın yerkabuğuna çıkması ile yanardağ patlamaları oluşur.

Magmanın fiziksel ve kimyasal özellikleri

Çoğu magmatik sıvı silika bakımından zengindir.[9] Silikat eriyikleri esas olarak silikon, oksijen, alüminyum, demir, magnezyum, kalsiyum, sodyum ve potasyumdan oluşur. Eriyiklerin fiziksel davranışları atomik yapılarının yanı sıra sıcaklık, basınç ve bileşime bağlıdır.[10]

Viskozite, magmaların davranışını anlamada önemli bir erime özelliğidir. Daha silika bakımından zengin eriyikler, daha fazla silika tetrahedra bağlantısı ile tipik olarak daha polimerize edilir ve dolayısıyla daha viskozdur. Suyun çözünmesi eriyik viskozitesini büyük ölçüde azaltır. Daha yüksek sıcaklık eriyikleri daha az viskozdur. Ayrıca, silikat eriyiği (magmanın sıvı fazı) viskoelastiktir, yani düşük gerilimler altında bir sıvı gibi akar, ancak uygulanan gerilim kritik bir değeri aştığında, eriyik gerilimi tek başına gevşetme yoluyla yeterince hızlı dağıtamaz, bu da geçici kırılmaya neden olur. Stresler kritik eşiğin altına düştüğünde, eriyik bir kez daha viskoz bir şekilde gevşer ve kırığı iyileştirir.[11]

Genel olarak konuşursak, bazalt oluşturanlar gibi daha mafik magmalar, riyolit oluşturanlar gibi daha silika bakımından zengin magmalardan daha sıcak ve daha az viskozdur. Düşük viskozite, daha yumuşak, daha az patlayıcı püskürmelere yol açar

Birkaç farklı magma türünün özellikleri aşağıdaki gibidir:

Ultramafik (pikrit)

< 45%

- > 8% ila 32%

Sıcaklık: 1500 °C'ye kadar

Viskozite: Çok Yavaş

Erüptif davranış: yumuşak veya çok patlayıcı

Dağılım: Sıcak noktalar, yakınsak plaka sınırları

Mafik (Bazaltik)

< 50%

ve tipik olarak <% 10 wt

Sıcaklık: ~1300 °C'ye kadar

Viskozite: Yavaş

Erüptif davranış: Sakin

Dağılım: Sıcak noktalar, yakınsak plaka sınırları

Orta Düzey (Andezit)

~60%

- : ~3%th

Sıcaklık: ~1000 °C

Viskozite: Orta Düzey

Erüptif davranış: Patlayıcı

Dağılım: Yakınsak plaka sınırları, ada yayları

Felsik (riyolitik)

> 70%

- : ~2%

Sıcaklık: <900 °C

Viskozite: Yüksek

Erüptif davranış: Patlayıcı

Dağılım: Kıta kabuğundaki (Yellowstone Milli Parkı) ve kıta yarıklarındaki sıcak noktalarda yaygındır.

Sıcaklık

Çoğu magmanın sıcaklıkları 700 °C ila 1300 °C (veya 1300 °F ila 2400 °F) arasındadır, ancak çok nadir bulunan karbonatit magmaları 490 °C kadar soğuk [12] komatit magmalar ise 1600 °C kadar sıcak olabilir.[13] Herhangi bir basınçta ve herhangi bir kaya bileşimi için, katılaşmayı geçen sıcaklıktaki bir artış erimeye neden olur. Katı toprak içinde, bir kayanın sıcaklığı Yer ısısı ve kaya içindeki radyoaktif bozunma tarafından kontrol edilir. Yer ısısı ortalama 25 °C / km'dir ve okyanus çukurları ve dalma bölgeleri içindeki düşük 5-10 °C / km'den okyanus ortası sırtları ve volkanik ark ortamları altında 30-80 °C / km'ye kadar geniş bir aralıkta ortalama 25 °C / km'dir.

Yoğunluk

Tipi Yoğunluk(kg/m3)
Bazalt Magma 2650-2800[14]
Andezit Magma 2450-2500[14]
Riyolit Magma 2180-2250[14]
Bileşimi

Büyük bir kaya kütlesinin toplu bileşimini değiştirmek genellikle çok zordur, bu nedenle bileşim, herhangi bir sıcaklık ve basınçta bir kayanın eriyip erimeyeceği konusunda temel kontroldür. Bir kayanın bileşiminin, su ve karbondioksit gibi uçucu fazları içerdiği de düşünülebilir.

Basınç altındaki bir kayada uçucu fazların varlığı, eriyik bir fraksiyonu stabilize edebilir. Hatta% 0,8'lik suyun varlığı erime sıcaklığını 100 °C'ye kadar düşürebilir. Tersine, bir magmadan su ve uçucuların kaybı, magmanın esasen donmasına veya katılaşmasına neden olabilir.

Ayrıca hemen hemen tüm magmanın büyük bir kısmı, bir silikon ve oksijen bileşiği olan silikadır. Magma ayrıca magma yükseldikçe genişleyen gazlar içerir. Yüksek silika içeren magma akmaya karşı dirençlidir, bu nedenle içinde genişleyen gazlar hapsolur. Gazlar şiddetli, tehlikeli bir patlamayla patlayana kadar basınç artar. Silika bakımından nispeten zayıf olan magma kolayca akar, bu nedenle gaz kabarcıkları içinden yukarı hareket eder.

Kısmi erime ile magmanın kökeni

Kısmi erime

Katı kayaların magma oluşturmak için erimesi üç fiziksel parametre tarafından kontrol edilir: sıcaklık, basınç ve bileşim. Mantodaki magma oluşumunun en yaygın mekanizmaları dekompresyon eritme,[15] ısıtma (örneğin, sıcak manto bulutuyla etkileşim yoluyla[16]) ve katılaşmanın düşürülmesidir (örneğin, su ilavesi gibi bileşim değişiklikleri ile[17]). Mekanizmalar, magmatik kayanın girişinde daha ayrıntılı tartışılmıştır.

Kayalar eridiğinde, bunu yavaş ve kademeli olarak yaparlar çünkü çoğu kayaç, hepsi farklı erime noktalarına sahip birkaç mineralden yapılmıştır; dahası, erimeyi kontrol eden fiziksel ve kimyasal ilişkiler karmaşıktır.Örneğin bir kaya eridikçe hacmi değişir. Yeterli kaya eridiğinde, küçük eriyik kürecikleri (genellikle mineral taneleri arasında oluşur) kayayı birbirine bağlar ve yumuşatır.Yeryüzündeki basınç altında, kısmi erimenin yüzde bir kısmının çok küçük bir bölümü, eriyiğin kaynağından sıkıştırılmasına neden olmak için yeterli olabilir.[18] Eriyikler % 20 veya hatta % 35'e kadar eriyecek kadar uzun süre yerinde kalabilir, ancak kayaçlar nadiren% 50'den fazla erir, çünkü eriyen kaya kütlesi sonunda kristal ve eriyen bir lapa haline gelir ve daha sonra toplu halde yükselebilir. Diyapir, daha sonra dekompresyon erimesine neden olabilir.

Kısmi erimenin jeokimyasal etkileri

Kısmi erime derecesi, ürettiği magmanın özelliklerinin belirlenmesi için kritiktir ve bir eriyik oluşma olasılığı, uyumsuz ve uyumlu elemanların dahil olduğu dereceleri yansıtır. Uyumsuz elementler arasında genellikle potasyum, baryum, sezyum ve rubidyum bulunur.

Dünya'nın mantosunda küçük derecelerde kısmi erime ile üretilen kaya türleri tipik olarak alkali (Ca, Na), potasik (K) veya peralkalindir (alüminyumun silikaya oranının yüksek olduğu). Tipik olarak, bu bileşimin ilkel erimeleri, lamprophyre, lamproite, kimberlite ve bazen alkali bazaltlar ve esseksite gabrolar veya hatta karbonatit gibi nefelin içeren mafik kayaçları oluşturur.

Pegmatit, kabuğun düşük dereceli kısmi erimesi ile üretilebilir. Bazı granit bileşimli magmalar ötektik (veya kotektik) eriyiklerdir ve kabuğun düşük ila yüksek derecelerde kısmi erimesi ve ayrıca fraksiyonel kristalleşme ile üretilebilir. Kabuğun yüksek dereceli kısmi erimesinde, tonalit, granodiyorit ve monzonit gibi granitoidler üretilebilir, ancak diğer mekanizmalar tipik olarak bunların üretiminde önemlidir.

Magmanın katılaşması

Kristalleşen mineraller yüksek sıcaklıkta ve uçucu bileşen bakımından fakir bir magmadan itibaren oluşurlar. Bu minerallere pirojenetik mineraller denir.

Pirojenetik minerallerin kristalleşip ayrılmasıyla magma uçucu bileşenler bakımından oldukça zenginleşir ve böylece bünyesinde hidroksil bulunan hidrojenetik mineraller ayrılır. Magmanın katılaşması sıcaklık ve uçucu bileşen miktarına bağlı olarak 4 evreye ayrılır.

Ortomagmatik evre

Bu evrede ilk kristalleşmelerle pirojenetik mineraller ayrılır. (1200 - 900 °C) Daha sonra hidrojenetik mineraller ayrılır. (900 - 700 °C)

Pegmatitik evre

Sıcaklık 700-500 °C arasındadır. Buhar basıncı çok yüksektir. Esas kristallenmeden sonra mağmanın büyük bir kısmı kristallenmiş ve geriye uçucu birleşen bakımından zengin bir artık çözelti kalmıstır. Bu artık çözeltiler son derce akıcı ve hareketlidir. Bunlar yan kayaç ve boşluklarına girerek pegmatitleri oluşturur. Çok büyük ekonomik değere sahip turmalin, topaz, beril gibi kristallerle Sn, U, Th gibi elementler içeren maden yataklarını oluşturlar.

Pnömatolitik evre

Magmanın katılaşması süreçlerinde gaz basıncının en yüksek olduğu ve sıcaklığın 500 - 400 °C arasında olduğu evredir.

Hidrotermal evre

Magmanın katılaşmasında son evredir. Sıcaklık 400 °C den düşüktür. Gaz basıncı ise oldukça azalır. Bu evrede çözeltiler çevre kayaçlardaki çatlak ve boşluklara girer, buralarda yeni mineraller oluşturur veya kayaçtaki bazı minerallerin mineralojik bileşimlerini değiştirir. Altın, gümüş, bakır gibi ekonomik değere sahip maden yatakları bu evrede oluşur. Hidrotermal evreden sonra sadece sadece su kalır. Magmanın katılaşması sona ermiştir.

Magmatik farklılaşma

Magma oluştuğu andan itibaren tamamen katılaşana kadar birtakım aşamalardan geçer. Her aşamada ilk oluştuğu durumdan farklılaşır. Buna magmatik farklılaşma denir. Magmatik farklılaşma dört alt süreci kapsar.

Likuasyon

Magmanın farklı özellik gösteren kısmi sıvılara ayrılma sürecidir. (Sıvı halde karışmazlık)

Bowen reaksiyon serisi

Fraksiyonel kristalleşme

Kristalleşen minerallerin eriyiği terk etmesi. Bu nedenle eriyiğin kimyasal bileşimi devamlı olarak değişir. Magmatik farklılaşma süreçleri içerisinde en önemlisidir.

Kristalleşen minerallerin eriyik ile temasının kesilmesi halinde fraksiyonel kristalleşmeden söz edilebilir. Minerallerin magma ile temasının kesilmemesi halinde minerallerin bileşimi eriyik ile reaksiyona girmeleri halinde devamlı olarak değişecektir.

Mineral ile eriyik arasında iki reaksiyon şekli gelişir. Bunlar kesikli ve kesiksiz reaksiyon serileridir.

İlk kristalleşen mineral olivin olacaktır. Ve belli bir sıcaklık derecesine kadar oluşmaya devam edecektir. Ve eriyik SiO2 bakımından oldukça zenginleşecektir. Daha sonra olivin eriyik ile reaksiyona girerek piroksen mineraline dönüşecektir.

Mg2SiO4 + SiO2 → 2MgSiO3

Bir mineralin eriyik ile reaksiyona girerek başka bir minerale dönüştüğü bu reaksiyon serisine kesikli reaksiyon serisi adı verilir.

Kesiksiz reaksiyon serisinde ise katı çözelti serisi teşkil eden bir mineralin kimyasal bileşimi devamlı olarak değişir.

Burada ortoklaz, biyotit ile plajiyoklas'ın reaksiyonu sonucu oluşmamaktadır.

Gazlarla taşınma

Uçucu bileşenlerin magma odasının bir kısmından kaçarak başka bir kısmında birikmesi, bu esnada bazı elementleri beraberinde taşıması ve böylece magma odasında farklı bileşime sahip kısımların ortaya çıkmasıdır.

Termogravitasyonel difüzyon

Magma odasındaki magma uzun süre beklerse ve katılaşmazsa eriyiğin her tarafında bileşim aynı olmaz. Ağır olan elementler aşağı çöker, hafif olanlar ise yukarı çıkar. Ve böylece magma odasında farklı bileşime sahip kısımlar ortaya çıkar.

Magmaların evrimi

Birincil erir

Kaya eridiğinde sıvı birincil eriyiktir. Birincil eriyikler herhangi bir farklılaşmaya uğramamış ve bir magmanın başlangıç bileşimini temsil etmektedir. Doğada birincil eriyikleri bulmak nadirdir. Migmatitlerin lökozomları birincil eriyik örnekleridir. Mantodan türetilen birincil eriyikler özellikle önemlidir ve ilkel eriyikler veya ilkel magmalar olarak bilinir. Bir magma serisinin ilkel magma bileşimini bularak, bir eriyiğin oluştuğu mantonun bileşimini modellemek mümkündür; bu, mantonun evrimini anlamak için önemlidir.

Ebeveyn erir

İlkel veya birincil magma bileşimini bulmak imkânsız olduğunda, ebeveyn erimesini belirlemeye çalışmak Genellikle yararlıdır. Ebeveyn eriyiği, gözlenen magma kimyası aralığının magmatik farklılaşma süreçleri tarafından türetildiği bir magma bileşimidir. İlkel bir eriyik olması gerekmez.

Örneğin, bir dizi bazalt akışının birbiriyle ilişkili olduğu varsayılır. Makul olarak fraksiyonel kristalizasyon yoluyla üretilebilecekleri bir kompozisyon, ebeveyn eriyiği olarak adlandırılır. Fraksiyonel kristalleşme modelleri, ortak bir ebeveyn erimesini paylaştıkları hipotezini test etmek için üretilecektir.

Mantonun yüksek derecede kısmi erimesinde, komatit ve pikrit üretilir.

Magmaların göçü ve kalınlaşması

Magma, sıcaklık ve basınç koşullarının erimiş hal için elverişli olduğu manto veya kabuk içinde gelişir. Magma, oluşumundan sonra yüzer bir şekilde Dünya yüzeyine doğru yükselir. Kabuktan geçerken magma toplanabilir ve magma odalarında kalabilir[5] (son çalışmalar, magmanın baskın sıvı magma odaları yerine trans-kabuk kristal zengini lapalarda depolanabileceğini öne sürse de. Magma soğuyana ve kristalleşip volkanik kaya oluşturana, bir volkan olarak patlayana veya başka bir magma odasına geçene kadar bir odada kalabilir. Magmanın değiştiği bilinen iki süreç vardır: kabuk veya manto içinde kristalleşerek bir plüton oluşturarak veya volkanik püskürme yoluyla lav veya tephra haline gelir.

Plütonizm

Magma soğuduğunda katı mineral fazları oluşturmaya başlar. Bunlardan bazıları magma odasının dibine yerleşerek, mafik katmanlı intrüzyonlar oluşturabilecek kümülatlar oluşturur. Bir magma odası içinde yavaşça soğuyan magma, genellikle magmanın bileşimine bağlı olarak gabro, diyorit ve granit gibi plütonik kayaların gövdelerini oluşturur. Alternatif olarak, magma püskürtülürse, bazalt, andezit ve riyolit (sırasıyla gabro, diyorit ve granitin ekstrüzif eşdeğerleri) gibi volkanik kayaçlar oluşturur.

Volkanizma

Volkanik bir patlama sırasında yeraltını terk eden magmaya lav denir. Lav, yeraltı magma kütlelerine kıyasla nispeten hızlı bir şekilde soğur ve katılaşır. Bu hızlı soğutma, kristallerin büyümesine izin vermez ve eriyiğin bir kısmı hiç kristalleşerek cama dönüşür. Büyük ölçüde volkanik camdan oluşan kayalar obsidiyen, çürükçü ve süngertaşı içerir.

Volkanik püskürmelerden önce ve sırasında, CO2 ve H2O gibi uçucular, eriyik olarak bilinen bir işlemle eriyiği kısmen terk eder. Düşük su içeriğine sahip magma giderek daha yapışkan hale gelir. Volkanik bir patlama sırasında magma yukarı doğru hareket ettiğinde kitlesel bir çözülme meydana gelirse, ortaya çıkan patlama genellikle patlayıcıdır.

Enerji üretimi için magma kullanımı

İzlanda Derin Sondaj Projesi, İzlanda yüzeyinin altındaki volkanik ana kayadaki ısıyı kontrol altına almak amacıyla birkaç 5.000 milyon delik açarken, 2009 yılında 2.100 metrede bir magma cebine çarptı. Çünkü bu, kayıtlı tarihte yalnızca üçüncü seferdi. Magmaya ulaşıldığında, IDDP deliğe yatırım yapmaya karar verdi ve adını IDDP-1 olarak verdi.

Magmaya yakın dibinde bir delik bulunan deliğe çimentolu çelik bir kasa inşa edildi. Magma buharının yüksek sıcaklıkları ve basıncı, 36MW güç üretmek için kullanıldı ve IDDP-1'i dünyanın ilk magma destekli jeotermal sistemi haline getirdi.[19]

Kaynakça

  1. ^ Greeley, Ronald; Schneid, Byron D. (1991-11-15). "Magma Generation on Mars: Amounts, Rates, and Comparisons with Earth, Moon, and Venus". Science. 254 (5034): 996-998. Bibcode:1991Sci...254..996G. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1126/science.254.5034.996. ISSN 0036-8075. 1 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. PMID 17731523. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. S2CID 206574665. 7 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ Spera, Frank J. (2000), "Physical Properties of Magma", in Sigurdsson, Haraldur (editor-in-chief) (ed.), Encyclopedia of Volcanoes, Academic Press, pp. 171–190, ISBN 978-0126431407
  3. ^ Foulger, G.R. (2010). Plates vs. Plumes: A Geological Controversy. 6 Nisan 2020 tarihinde Wayback Machine sitesinde arşivlendi. Wiley–Blackwell. ISBN 978-1-4051-6148-0.
  4. ^ Detrick, R. S.; Buhl, P.; Vera, E.; Mutter, J.; Orcutt, J.; Madsen, J.; Brocher, T. (1987). "Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise". Nature. 326 (6108): 35–41. Bibcode:1987Natur.326...35D 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.. doi:10.1038/326035a0. 28 Eylül 2021 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 0028-0836. 12 Mayıs 2020[Tarih uyuşmuyor] tarihinde Wayback Machine sitesinde arşivlendi. S2CID 4311642. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ a b Sparks, R. Stephen J.; Cashman, Katharine V. (2017). "Dynamic Magma Systems: Implications for Forecasting Volcanic Activity". Elements. 13 (1): 35–40. doi:10.2113/gselements.13.1.35. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 1811-5209. 10 Haziran 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  6. ^ Scientists' Drill Hits Magma: Only Third Time on Record, 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. UC Davis News and Information, June 26, 2009.
  7. ^ Magma Discovered in Situ for First Time. 11 Şubat 2021 tarihinde Wayback Machine sitesinde arşivlendi. Physorg (December 16, 2008)
  8. ^ Puna Dacite Magma at Kilauea: Unexpected Drilling Into an Active Magma Posters, 3 Temmuz 2015 tarihinde Wayback Machine sitesinde arşivlendi. 2008 Eos Trans. AGU, 89(53), Fall Meeting.
  9. ^ MCBIRNEY, A. R.; NOYES, R. M. (1979-08-01). "Crystallization and Layering of the Skaergaard Intrusion". 14 Ağustos 2019 tarihinde Wayback Machine sitesinde arşivlendi. Journal of Petrology. 20 (3): 487–554. Bibcode:1979JPet...20..487M. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1093/petrology/20.3.487. 14 Ağustos 2019 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 0022-3530. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  10. ^ Watson, E. B.; Hochella, M. F. and Parsons, I. (editors), Glasses and Melts: Linking Geochemistry and Materials Science, Elements, volume 2, number 5, (October 2006) 18 Ekim 2021 tarihinde Wayback Machine sitesinde arşivlendi. pp. 259–297
  11. ^ Wadsworth, Fabian B.; Witcher, Taylor; Vossen, Caron E. J.; Hess, Kai-Uwe; Unwin, Holly E.; Scheu, Bettina; Castro, Jonathan M.; Dingwell, Donald B. (December 2018). "Combined effusive-explosive silicic volcanism straddles the multiphase viscous-to-brittle transition". Nature Communications. 9 (1): 4696. Bibcode:2018NatCo...9.4696W. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1038/s41467-018-07187-w. ISSN 2041-1723. 10 Mart 2021 tarihinde Wayback Machine sitesinde arşivlendi. PMC 6224499. PMID 30409969. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  12. ^ Weidendorfer, D.; Schmidt, M.W.; Mattsson, H.B. (2017). "A common origin of carbonatite magmas". 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. Geology. 45 (6): 507–510. Bibcode:2017Geo....45..507W. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1130/G38801.1. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  13. ^ Herzberg, C.; Asimow, P. D.; Arndt, N.; Niu, Y.; Lesher, C. M.; Fitton, J. G.; Cheadle, M. J.; Saunders, A. D. (2007). "Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites". 27 Nisan 2019 tarihinde Wayback Machine sitesinde arşivlendi. Geochemistry, Geophysics, Geosystems. 8 (2): n/a. Bibcode:2007GGG.....8.2006H. 10 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1029/2006gc001390. hdl:20.500.11919/1080. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 1525-2027. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  14. ^ a b c usu.edu - Geology 326, "Properties of Magmas" 12 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi., 2005-02-11
  15. ^ Geological Society of America, Plates, Plumes, And Paradigms, pp. 590 ff., 2005, ISBN 0-8137-2388-4
  16. ^ Campbell, I. H. (2005-12-01). "Large Igneous Provinces and the Mantle Plume Hypothesis". Elements. 1 (5): 265–269. doi:10.2113/gselements.1.5.265. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 1811-5209. 10 Haziran 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  17. ^ Asimow, P. D.; Langmuir, C. H. (2003). "The importance of water to oceanic mantle melting regimes". Nature. 421 (6925): 815–820. Bibcode:2003Natur.421..815A. 10 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1038/nature01429. ISSN 0028-0836. 12 Mayıs 2020[Tarih uyuşmuyor] tarihinde Wayback Machine sitesinde arşivlendi. PMID 12594505. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. S2CID 4342843. 7 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  18. ^ Faul, Ulrich H. (2001). "Melt retention and segregation beneath mid-ocean ridges". Nature. 410 (6831): 920–923. Bibcode:2001Natur.410..920F. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1038/35073556. ISSN 0028-0836. 12 Mayıs 2020[Tarih uyuşmuyor] tarihinde Wayback Machine sitesinde arşivlendi. PMID 11309614. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. S2CID 4403804. 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  19. ^ Elders, Wilfred A.; Friðleifsson, Guðmundur Ó.; Pálsson, Bjarni (Ocak 2014). "Iceland Deep Drilling Project: The first well, IDDP-1, drilled into magma". Geothermics. 49: 1. doi:10.1016/j.geothermics.2013.08.012. ISSN 0375-6505. 
  • Prof.Dr. Yavuz Erkan, Magmatik Petrografi, sf. 17-23 (1997)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Dünya'nın yerkabuğu</span> Dünyanın dış tabakası

Yer kabuğu, taş küre veya litosfer, Yerküre'nin en dış kısmında bulunan yapıdır.

Manto, yer kabuğu ile çekirdek arasında yer alan, derinliğe göre değişen ısıya sahip bir yer katmanıdır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastikimsi özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Kalınlığı 2.860 kilometreye yakındır. Ultra bazik kayaç veya ultramafik kayaçlardan oluşur. Dünya'nın en kalın katmanıdır. Ağır olup yoğunluğu 3,5–6 g/cm³ arasında bulunur. Bazı gezegenler, bazı asteroitler ve bazı gezegen uyduları mantoya sahiptir. Sıcaklığı 1900-3700 °C arasında değişir. Yapısında silisyum, magnezyum, nikel ve demir bulunmaktadır. Okyanus ortası sırtlarında oluşan kısmi manto erimesi okyanusal kabuğu, Yitim zonlarında meydana gelen kısmi manto erimeleri ise kıtasal kabuğu oluşturmaktadır.

<span class="mw-page-title-main">Kayaç</span> doğal olarak oluşan mineral agregası

Kayaç, çeşitli minerallerin veya mineral ve taş parçacıklarının bir araya gelmesinden ya da bir mineralin çok miktarda birikmesinden meydana gelen katı birikintilerdir. Kayaç terimi eski Türkçede sahre, yeni Türkçede külte ve yabancı dillerdeki rock, roche, gestein sözcükleri karşılığı kullanılmaktadır.

<span class="mw-page-title-main">Granit</span>

Granit, sert, kristal yapılı minerallerden meydana gelen tane görünüşlü magmatik felsik müdahaleci magmatik bir kaya türüdür. Granit kelimesi, tamamen kristalli bir kayanın kaba taneli yapısında bulunan Latince granumdan gelir. Plüton içindeki taneler çoğunlukla gözle görülebilir büyüklüktedir. Feldispatın esas mineralleri ortoklas cinsi ile az miktarda plajioklas ve kuvarstır. Ayrıca mika, hornblend, piroksen ve ikinci gruba giren turmalin, apatit, zirkon, grena, manyetit gibi mineraller de bulunabilir. Ancak genellikle "granit" terimi daha geniş bir yelpazede ifade etmek için kullanılır.

<span class="mw-page-title-main">Mermer</span> heykel ve yapı malzemesi olarak yaygın olarak kullanılan katmansız metamorfik kaya

Mermer, metomorfizma olayı sonucunda kalker ve dolomitik kalkerlerin yeniden kristalleşmesiyle meydana gelmiş bileşimdir. Bileşimlerinin %90-98'i CaCO3'ten (Kalsiyum karbonat) oluşmaktadır. Düşük oranda MgCO3 (Magnezyum karbonat) içermektedir. CaCO3 kristallerinden oluşan mermerlerde esas mineral “Kalsit” tir. Aynı zamanda az miktarda silis, silika, feldspat, demiroksit, mika, fluorin ve organik maddeler bulunabilir. Renkleri genellikle beyaz ve grimsidir. Fakat yabancı maddeler nedeniyle sarı, pembe, kırmızı, mavimtırak, esmerimsi ve siyah gibi renklerde de olabilirler. Mikroskop altında incelendiğinde, birbirine iyice kenetlenmiş "Kalsit Kristalleri"nden oluştuğu görülür.

<span class="mw-page-title-main">Olivin</span>

Olivin, yüksek sıcaklık silikat minerali ailesidir. Rengi siyahtan zeytin yeşiline değişir. Olivin adını, tephroit (Mn2SiO4), monticellit (CaMgSiO4), larnit (Ca2SiO4) ve kirschsteinite (CaFeSiO4)içeren mineraller grubuyla ilgili bir yapıya denir. Ortorombik simetride kristalleşen olivin grubu minerallerden (Mg,Fe)-olivinlerde Mg2SiO4 ve Fe2SiO4 uç üyeleri arasında tam bir katı çözelti oluştururlar. Ayrıca Fe ve Mn olivinler arasında da sürekli bir seri bulunmaktadır.. Ultrabazik ve bazik kayaçlarda görülen önemli bir mafik mineraldir. Dünit adı verilen ultrabazik kayalar %90,100 olivinden oluşur. Dolomitik Kireç taşı bölgesel ve kontak metamorfizmaları sırasında yüksek dereceli metamorfizma koşullarında forsterit bakımından zengin olivinler oluşur. Olivinlerin kimyasal bileşimleri -plajioklaslarda An (anortit) cinsinden olduğu gibi- içerisinde barındırdığı forsterit (Fo) yüzdesi ile ifade edilir. Örneğin Fo47 şeklindeki bir ifade mineralin % 47 forsteritten, % 53 fayalitten oluştuğunu gösterir.

<span class="mw-page-title-main">Bazalt</span>

Bazalt, volkanik kaya kütlelerinden biri. Siyah renkte ve kesif yığınlar halindedir. Doğada kütle, damar ve akıntı halinde bulunur. Başlıca özelliklerinden birisi, altıgen prizmalar biçiminde, büyük sütunlar meydana getirmesidir. Bu sütunlar, mağma akıntılarının soğuyup büzülmesinden ileri gelmiştir. Sert ve dayanıklı bir taş olduğundan kaldırım, yapı taş, demiryolu, köprü malzemesi olarak kullanılır. Yeryüzünde çok bol olan bazalt, bazı memleketlerde, binlerce kilometrekarelik yerleri örter. Birleşik Krallık'ın kuzeyi, İrlanda, Almanya ve Amerika Birleşik Devletleri'nde büyük Hindistan'da Dekkan bölgesindeki bazalt yığınları 300.000 kilometrekarelik geniş bir bölgeyi kaplar.

<span class="mw-page-title-main">Stratovolkan</span> lav, tüf ve kül tabakasından oluşmuş, yüksek, konik biçimli bir volkan

Stratovolkan, pek çok sertleşmiş lav, tüf ve kül tabakasından oluşmuş, yüksek, konik biçimli bir volkandır. Bu volkanlar dik yamaçlarıyla ve periyodik patlamalarıyla tanınırlar. Bunlardan fışkıran lavın akışkanlığı azdır ve çok uzağa yayılmadan önce soğur ve sertleşir. Magmaları asidik ya da yüksek-orta düzeyde silika içeriklidir. Buna karşın bazik içerikli magmanın akışkanlığı yüksektir ve Hawaii'deki kalkan biçimli Mauna Loa dağı gibi yayvan dağları oluşturur. Pek çok stratovolkanın yüksekliği 2500 metreden fazladır. Türkiye'den Ağrı Dağı ve Nemrut Dağı birer stratovolkan tipindeki volkanlardır.

<span class="mw-page-title-main">Başkalaşım kayaçları</span> Isı ve basınca maruz kalan kaya

Başkalaşım kayaçları ya da metamorfik kayaçlar, magmatik ve tortul kayaçların çeşitli etkilerle değişime uğraması sonucu oluşurlar. Mermer, başkalaşım kayaçlarına bir örnek olarak verilebilir. Gnays, elmas ve şist de bu kayaçlara verilebilecek diğer örneklerdir.

<span class="mw-page-title-main">Karbonatit</span>

Karbonatit, kalsit ve diğer karbonat minerallerince zengin, manto kökenli olduğu kabul edilen nadir bir kayaç. Karbonatitler, sokulum yapmış kütleler, dayklar, konik örtüler ve nadiren de lavlar ve tefra şeklinde alkalilerce zengin kor kayaçlarla ilişkili olarak bulunur.

<span class="mw-page-title-main">Magmatik kayaçlar</span> Magmanın yeryüzüne çıkarken soğumasıyla meydana gelen kayaçlardır.

Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. Magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.

<span class="mw-page-title-main">Andezit</span>

Andezit, porfiritik dokuya sahip ara bileşimin magmatik yüzey kayasıdır. Genel anlamda bazalt ve riyolit arasındaki ara tiptir ve TAS diyagramında gösterildiği gibi, silisyum dioksit (SİO2) oranı %57 ve %63 arasında değişmektedir. Kıtasal kabuğun ortalama bileşimi andeziktir. Bazaltlarla birlikte Mars kabuğunun da önemli bir bileşeni olduğu tahmin edilmektedir. Andezit adı Andes Dağı silsilesinden türetilmiştir.

<span class="mw-page-title-main">Volkanizma</span>

Volkanizma, erimiş kayalardan oluşan magmanın sırf gazdan oluşmayan bir gök cisminin yüzeyine magma ve gazın yüzeydeki çatlak ya da yanardağ ağzından yüzeye çıkması fenomenindir. Gök cisminin kabuğu veya mantosu magmadan kaynaklanan veya onu oluşturarak yüzeye çıkana kadar olan bütünü kapsar.

<span class="mw-page-title-main">Tüf</span>

Tüf, bir volkanik patlama sonucu ortaya çıkan volkanik küllerden oluşan kaya türüdür. Tüf kimi zamanlarda inşaat malzemesi olarak kullanılan farklı bir kaya anlamına da gelir. %50’den daha fazla tüf içeren kayalar tüflü olarak kabul edilir. Tüf tortul veya magmatik kayaçlar olarak sınıflandırılabilir. Sedimantolojik terimler ile açıklanmasına rağmen magmatik petroloji bağlamında incelenmektedir.

<span class="mw-page-title-main">Kayaç döngüsü</span>

Yer kabuğunu oluşturan üç temel kayaç türü vardır. Bunlar; magmatik kayaçlar, tortul kayaçlar ve başkalaşım kayaçlarıdır. Bu kayaçlar oluştukları günden bugüne kadar geçen zamanda birçok değişikliğe uğramışlardır. Her ne kadar bulundukları yerde hiç hareket etmeden kalsalar da, her biri çok uzun yıllardır süren bir değişikliğin parçasıdır. Kayaçların oluştukları günden bu yana devam eden ve farklı tür kayaçların doğal yollarla birbirine dönüşmesini açıklayan bu olaya "kayaç döngüsü" denir. Kayaç döngüsünü devam ettiren etken, doğal olaylardır. Kayaç döngüsünün geçtiği evreler:

Volkanik yay. Adalar dizisi (yayı); çoğunlukla birbirine yaklaşan iki tektonik plaka arasında bulunan sınıra, paralel ve yakın olarak konumlanan, yay şeklinde hizalanmış, volkan zincirlerinden oluşan takımada, yani içinde çok ada olan bir deniz türüdür. Volkanik yay ada yayının alt başlığı altında incelenmektedir. Kısmen deniz seviyesinin altında olan ada yayları, tektonik olarak yay şeklindeki dağ kuşağını oluşturur. Aslında ada yayları, okyanusun altında kısmi olarak kalan bir dağ bendinde bulunan özel bir coğrafik-topoğrafik durumu simgeler. Bunların çoğu volkanlardan oluştuğu için volkanik ada yayları olarak da sınıflandırılabilir.

<span class="mw-page-title-main">Riyolit</span>

Riyolit, silis içeriği çok yüksek olan ekstrüzyonla üretilmiş magmatik bir kayaçtır. Riyolit, kuvarstan oluşur ve az miktarda hornblende ve biyotit içerir. Sıkıştırılmış gazlar genellikle kayada vig üretirler. Genellikle kristaller, opal veya camsı maddeler içerirler. Riyolit, plütonik granit kayaya göre eşdeğer olarak düşünülebilir ve sonuç olarak, riyolitin yüzeyleri de granite benzeyebilir.granitle kimyasal yapı yönünden aynı olan, serbest silisçe zengin, içinde mikrolitler bulunan kayaçtır. Riyolit, granitle aynı kimyasal yapıda olan camsı bir kütledir. İçinde mikrolitler olan kayaçtır.Mikrolit: Mezolitik Çağ'da insanların küçük boyuttaki aletlerinde kullandığı küçük taşlarla yapılmış aletlere minitaş anlamında mikrolit ismi verilmiştir. Eş anlamlısı Yüksek silika içeriği ve düşük demir ve magnezyum içeriği nedeniyle, riyolitik magmalar oldukça viskoz lavlar oluşturur. Granitin yüzey eşdeğeridir ve granit gibi başlıca açık renkli silikat minerallerinden oluşur. Bu mineralojik bileşim riyolitlerin boz ile pembe arasında, bazen de açık gri renkli olmasını sağlar. Riyolit ince taneli bir kayaçtır ve sıklıkla cam parçaları ve gaz boşlukları kapsar. Bu özellikler onun yüzey koşullarında hızlı soğuma ile oluştuklarına işaret etmektedir. Eğer riyolitler fenokristal içeriyorsa bunlar küçük boyutludur, kuvars veya potasyum feldispatlardan oluşur. Kabukta çok yaygın ve büyük magmatik gövdeler halinde bulunan granitlerin tersine riyolitler hem daha az yaygın hem de küçük hacimli kütleler halinde görülmektedir. Riyolit plütonik granit kaya ekstrüzyon eşdeğer olarak kabul edilebilir ve sonuç olarak, riyolit mostra granit bir benzerlik taşıyabilir. Yüksek silika içeriği ve düşük demir ve magnezyum içeriği nedeniyle, riyolitik magmalar oldukça viskoz lavlar oluşturur. Ayrıca breccias veya volkanik fişler ve pençeler olarak ortaya çıkar. Kristalleri büyütmek için çok hızlı soğuyan riyolitler, obsidyen olarak da adlandırılan doğal bir cam veya vitrophyre oluşturur. Daha yavaş soğutma, lavda mikroskobik kristaller oluşturur ve akış yaprakları, sferulitik, nodüler ve litofizal yapılar gibi dokularla sonuçlanır. Bazı riyolit oldukça veziküler pomza. Riyolitin birçok patlaması oldukça patlayıcıdır ve tortular serpinti tefra/tüf veya ıgnimbritlerden oluşabilir. Riyolit püskürmeleri, daha az felsik lavların püskürmelerine kıyasla nispeten nadirdir. 20.yüzyılın başından bu yana sadece üç riyolit patlaması kaydedildi: Papua Yeni Gine'deki St. Andrew Boğazı yanardağı, alaska'daki Novarupta yanardağı ve Güney Şili'deki Chaiten. Riyolit, karadan uzak adalarda bulunmuştur, ancak bu tür okyanus olayları nadirdir. Etimoloji ve tarih Riyolit Yunanca kelime ῤεῖν bir yenilikçilik, rheîn “akış” ve λίθος, líthos, “taş”dır. Kayanın bilimsel tanımı Baron Ferdinand von Richthofen tarafından 1860 yılında yapılmıştır. Mineral topluluğu genellikle kuvars, sanidin ve plajiyoklaz Bir riyolit başlıca kuvars ve feldispat oluşmaktadır. Kuvars içeriği muhtemelen Riyolitik eriyiğin kristalleşme ile meydana gelmeyecektir, sadece kaya takip eden zenginleştirme işlemlerinden ile % 50'den fazla bir kuvars paylarıyla, %20 ve %60 arasında değişmektedir. Kristal-fakir riyolitlerle için QAR ve kuvars-zengin tipleri, kısaltma QRR kısaltmasıdır. Kalan %40-80 ağırlıklı alkali feldspat %35-90,10 ve %65 plajiyoklaz ve tamamlayıcı arasındaki dar anlamda riyolit onlar için hesap feldspat oluşur. Daha fazla %65 plajiyoklaz riyodasit ile paylaşımın alkali riyolit, yani, fazla %90 alkali feldspat ile felsik volkanitler görülür. Buna ek olarak, bir riyolit küçük miktarlarda - genellikle en fazla %2, azami %15 - on mafik minerallerin. Riyodasitler tür hisselerin %20 fazla olabilir. Bu maddeler arasında sık sık biyotit oluşur, ancak ek olarak, aynı zamanda hornblendli veya ojit. Riyolit çok küçük miktarlarda gibi manyetit, hematit, kordiyerit, granat veya olivin gibi mineraller çoğunlukla hala içerirler. Kaldaklofsfjöll: Genellikle riyolit bir porfirik dokuya sahiptir. Bu çoğunlukla kuvars ve feldispat oluşmaktadır olan tek kristaller man fenokristalleri denilen dağınık büyük kristaller, sadece bir mikroskop altında görülebilen ve gömülü bir yoğun, ince taneli matrisi oluşur anlamına gelir ve boyutu birkaç santimetre birkaç milimetre. Ancak, Afirik veya felsitischen riyolitlerden sonra yani tamamen ince taneli herhangi Einsprengling olmadan riyolit, manspricht vardır. Kısmi de riyolit kayalar kolayca tanınabilir akış dokular gösterir. Genç jeolojik zamanda riyolit gaz kabarcıkları vardı. Bu boşluk kabarcıkları genellikle orada zaman içinde çökeldi. Bu boşluklar minerallerle dolduruldu. Obsidyenle aynı kimyasal bileşime sahip riyolit volkanik bir camdır.

<span class="mw-page-title-main">Fenokristal</span>

Fenokristaller boyutları yüzünden göze çarpan magmatik kayaçlardaki mineral kristallerdir.

<span class="mw-page-title-main">Gabro</span>

Gabro, yeryüzü yüzeyinin altında yer alan bir holoskristalin kütlesine magnezyum ve demir bakımından zengin magmanın yavaş soğumasından meydana gelen magmatik bir kayadır. Dünyanın okyanusal kabuklarının çoğu, okyanus ortasındaki sırtlarda oluşan gabrodan meydana gelir. Gabro ayrıca kıtasal volkanizma bağlı plütonlar olarak bulunur.

İç püskürük kayaçlar, mantodan kök alan magmanın yavaş soğumasıyla oluşan bir kayaç türüdür. Magmatik kayaçlar genel olarak 3 başlık altında sınıflandırılırlar. İç püskürük, dış püskürük ve yarı derinlik kayaları. Magmanın kompozisyonu veya başka bir sebepten ötürü yüzeye olan uzaklıklarına göre farklı soğuma şekilleri gösterdikleri için her biri farklı karakteristikler göstererek kayaç oluştururlar.