İçeriğe atla

Mıknatıslık

Mıknatıslık veya manyetizma,[1] (Fransızca magnétism), fizikte (doğabilimde), aracılığı ile gereçlerin diğer gereçler üzerine çekici veya itici güç uyguladıkları olgulardan biridir. Kolayca saptanabilen mıknatıssal özelliklere sahip gereçlerden bazıları, demir, çeliğin birkaç türü ve manyetit bileşikleridir; ancak, tüm gereçler, mıknatıssal alanların varlığından farklı derecelerde etkilenirler.

Tarihçe

Megneteslerce kurulmuş Grek kolonisi Magnesia'da (bugünkü Manisa yakınları) M.Ö. 6. yy.da Yunan filozof Thales, mıknatıs taşlarının demir tozlarını çektiğini bulmuştur. Magnetik kelimesi, Magnesia kentinden türemiştir. Elektrik kelimesi de kehribarın Grek dilindeki karşılığı olan elektron teriminden türemiştir.[2]

Manyetiklik ile ilgili ilk yazılı kayıtlardan biri Çin'in M.Ö. 4. yüzyılına dayanır ve Şeytan ovası ustasının kitabı (鬼谷子) adlı eserdir. Bu eserde: "Manyetit demiri çekebilir veya itebilir." yazmaktadır.[3] İğneler ile ilgili en erken deneylere ise, M.S. 20 ile 100 yılları arasında rastlanır, (Louen-heng): "Manyetit iğneyi çeker."[4] 12. yüzyıla varıldığında ise, Çinlilerin manyetit tabanlı pusulayı yönleyim (navigasyon) için kullandıkları biliniyordu.

Fiziksel açıdan mıknatıslık

Çubuk bir mıknatısın kâğıt üzerinde demir kırıntıları ile oluşan mıknatıssal çizgileri.

Mıknatıssal güçler, elektriksel yüklerin hareketlerinden doğarlar. Maxwell'in denklemleri ile Biot-Savart yasası bu güçlerin kökenini ve onları yöneten alanların yasalarını açıklarlar. Bir diğer deyişle, elektriksel yükler hareket ettiğinde, mıknatıslık olgusu ortaya çıkar. Örneğin bu devinim veya hareket, elektrik akımı içindeki eksicikler olabilir, dolayısı ile sonucu da elektromanyetiklikdir; veya eksiciklerin yörüngesel devinimi de olabilir ki onun sonucu da doğal mıknatıslardır.

Einstein'a göre,[5] mıknatıssal güç, elektrik alanı içerisinde gerçekleşen bir huzursuzluğun (eksicik devinimi), yüklere dik olarak etki edip onları eski konumlarına iter. Bu yüzdendir ki, mıknatıslık da, Görelilik kuramı'nın doğrudan bir sonucu olarak, temelde bir elektriksel olgu olarak ele alınır...

Mıknatıssal alanda yüklü parçacık

Elektriksel yüke sahip bir parçacık B mıknatıssal alanında hareket ettiğinde (veya devindiğinde), ona F gücü etki eder:

burada parçacığın yükü, parçacığın hareket (veya devinim) hızı, ivmesi ve mıknatıssal alandır.

Çapraz (veya yönel) çarpım olması nedeniyle, ortaya çıkan güç, hem parçacığın devinimine hem mıknatıssal alana diktir. Dolayısıyla, bu güç, parçacık üzerine herhangi bir gerçekleştirmez; devinim yönünü değiştirebilir, ancak yavaşlamasına veya hızlanmasına neden olamaz.

Mıknatıslı tornavida etrafındaki demir parçacıkları.

Hareket eden bir yüklü parçacığın hız yöneyini "V", mıknatıssal alanı "B" ve parçacığa etki eden gücü "F" bulmanın bir yolu, sağ elimizin başparmağını "F", orta parmağı "B" ve işaret parmağını "V" olarak tanımlayıp, elimizi "silah" gibi doğrulatarak her üç parmağı birbirine dik olacak biçimde konumlandırmaktır. Bu yöntem ayrıca sağ el kuralı olarak da bilinmektedir.

Mıknatıslılığın nedeni

Doğabilimsel açıdan, elektrik akımlarının aksine, nesnelerin mıknatıslılığı, atom (veya öğecik) düzeyindeki eksicik deviniminden kaynaklanır (öğeciksel çift kutuplusu). Ayrıca mıknatıssal moment olarak da bilinen atom düzeyindeki bu devinimler iki türdendir. Birincisi, eksiciklerin atom çekirdeği yörüngesindeki devinimidir, çok daha güçlü olan ikincisi ise, kendi çevrelerindeki devinimleridir (spin). Bir atomun (veya öğeciğin) toplam mıknatıssal momenti ise, her eksiciğinin mıknatıssal momentinin toplamına eşittir. Ancak eksiciklerin çekirdek çevresindeki konumlarına göre, birbirlerinin mıknatıssal momentlerini etkisiz hâle getirebilmeleri söz konusudur. Dolayısıyla atomun mıknatıssal açıdan davranışı ancak etkin olan eksicikleri tarafından belirlenir. Bunun sonucunda, eksicik yapılandırmasına göre doğada farklı mıknatıslık özellikleri taşıyan maddelere rastlanır:

  • Diamıknatıslık (diamanyetizm)
  • Paramıknatıslık (paramanyetizm)
    • Özdeciksel mıknatıs (moleküler mıknatıs)
  • Feromıknatıslık (Feromanyetizm)
    • Antiferromıknatıslık (Antiferromanyetizm)
    • Ferrimıknatıslık (Ferrimanyetizm)
    • Metamıknatıslık (Metamanyetizm)
  • Spin camı
  • Superparamıknatıslık (Superparamanyetizm)

Mıknatıssal çift kutuplular (dipollar)

Olağan şartlar altında mıknatıssal alanlar, çift kutuplu (veya dipol) olarak görülürler. Bu kutuplara, uzlaşımsal olarak Güney kutbu ve Kuzey kutbu denmektedir. Bu isimler, geçmişte mıknatısların pusula olarak Dünya'nın mıknatıssal alanı ile etkileşip kutupları göstermek için kullanılmalarına dayanır.

Mıknatıssal bir alan, enerji içerir ve dolayısıyla bu tür düzenekler, en düşük erke düzeyinde dengeye erişmeye uğraşırlar. Böylece, "mıknatıssal bir çift kutuplu" kendisini bulunduğu alanın kutuplarına göre ters olarak konumladırmaya uğraşır. Bu konumlandırma sayesinde, düzeneğin toplam erkesini en aza indirir. Örneğin, iki çubuk mıknatıs olağan olarak kuzeyden güneye doğru konumlandırılırlar ve bu konumlandırmayı değiştirmek için ek güç gerekmektedir. Bu yönde harcanın güç ise ortaya çıkan düzeneğin mıknatıssal alanında yığılıdır.

Mıknatıssal tek kutuplular (monopollar)

Günümüz mıknatıslık anlayışı, tüm mıknatıssal etkilerin aslında göreceli etkiler olduğu üzerine kuruludur.[5] Bu görelilik, gözlemci ile yüklü parçacıkların arasındaki göreceli devinime (veya harekete) dayalıdır. Aslına bakılırsa, tüm mıknatıslık etkilerin devinen elektriksel yüklerden kaynaklandığını düşünürsek, tüm mıknatıslar birer elektromıknatıstır.

Atomların (veya öğeciklerin) bile kendilerine özel mıknatıssal alanları vardır. Günümüzde geçerli olan atom kuramına göre, eksicikler çekirdeğin yörüngesinde devinirler ve dolayısıyla mıknatıssal bir alan oluşur. Doğal mıknatısların ölçülebilir derecede güçlü mıknatıssal alanları ise, atom ve hatta özdeciklerin (moleküllerin) alanlarının aynı doğrultuda olup, birleşip güçlenmelerinden kaynaklanır.

Paul Dirac'ın 1931 yılındaki gözlemleri, mıknatıssal tek kutupluların varlığını öngürür. Ayrıntıya girmek gerekirse, bu öngörü iki temel olguya dayanır: a) eksicik ve artıcıkların ters ve eşit miktarda yüklü parçacıklar olarak varlığı ve b) elektrik ve mıknatıslılık arasındaki bakışım (veya simetri). Dolayısıyla, Güney ve Kuzey olarak mıknatıssal tek kutupluların da doğada varlığının olası olduğu iddia edilmektedir. Ancak, artıcık ve eksiciklerin tersine, tek kutupluluk savını destekleyecek herhangi bir kanıt henüz bulunamamıştır.

Ayrıca bakınız

Kaynakça

  1. ^ manyetizma 5 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi. Dil Derneği. Erişim: 20 Aralık 2011.
  2. ^ M. İdemen, Elektromanyetik Alan Teorisinin Temelleri, İstanbul, İTÜ Vakfı Yayınları, 2006.
  3. ^ Li Shu-hua, “Origine de la Boussole 11. Aimant et Boussole,” Isis, Vol. 45, No. 2. (Jul., 1954), s.175
  4. ^ Li Shu-hua, “Origine de la Boussole 11. Aimant et Boussole,” Isis, Vol. 45, No. 2. (Jul., 1954), s.176
  5. ^ a b A. Einstein: "On the Electrodynamics of Moving Bodies", June 30, 1905. http://www.fourmilab.ch/etexts/einstein/specrel/www/. 6 Mart 2007 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Elektrik</span> elektrik yükünün varlığı ve akışı ile ilgili fiziksel olaylar

Elektrik, elektrik yüklerinin akışına dayanan bir dizi fiziksel olaya verilen isimdir. Elektrik sözcüğü Türkçeye Fransızcadan geçmiştir. Elektriğin Türkçe eş anlamlısı çıngı sözcüğüdür. Ayrıca Anadolu ağızlarında elektrik anlamında yaldırayık sözcüğü tespit edilmiştir. Elektrik, pek çok farklı şekillerde var olabilir. Örneğin, yıldırımlar, durgun elektrik, elektromanyetik indüksiyon ve elektrik akımı gibi. Ek olarak, elektriğin elektromanyetik radyasyon, radyo dalgaları gibi oluşumları olduğu bilinmektedir.

<span class="mw-page-title-main">Elektrik yükü</span> bir nesnenin elektriksel alan ile etkileşimi neticesinde ölçülebilen fiziksel özelliği

Elektrik yükü veya elektriksel yük, bir maddenin elektrik yüklü diğer bir maddeyle yakınlaştığı zaman meydana gelen kuvvetten etkilenmesine sebep olan fiziksel özelliktir. Pozitif ve Negatif olmak üzere iki tür elektriksel yük vardır. Pozitif yüklü maddeler, diğer pozitif yüklü maddeler tarafından itilirken, negatif yüklü olanlar tarafından çekilir; negatif yüklü maddeler de negatif yüklüler tarafından itilir ve pozitif olanlar tarafından çekilir. Bir cisimde negatif yükler pozitif yüklere dominantsa, negatif yüklüdür; tersi durumdaysa pozitif yüklüdür; dominantlık söz konusu değilse yüksüzdür. Uluslararası Birim Sistemi (SI) elektrik yükünü coulomb (C) olarak adlandırırken, elektrik mühendisliğinde amper-saat (Ah) olarak ve kimyada da elemanter yük (e) olarak adlandırmak mümkündür. Q sembolü genellikle yükü ifade etmek için kullanılır. Yüklü cisimlerin birbirleriyle nasıl iletişimde olduklarını anlatan çalışma klasik elektromanyetizmadır ve kuantum mekaniğinin göz ardı edilebildiği ölçüde doğrudur.

<span class="mw-page-title-main">Parçacık fiziği</span>

Parçacık fiziği, maddeyi ve ışınımı oluşturan parçacıkların doğasını araştıran bir fizik dalıdır. Parçacık kelimesi birçok küçük nesneyi andırsa da, parçacık fiziği genellikle gözlemlenebilen, indirgenemez en küçük parçacıkları ve onların davranışlarını anlamak için gerekli temel etkileşimleri araştırır. Şu anki anlayışımıza göre bu temel parçacıklar, onların etkileşimlerini de açıklayan kuantum alanlarının uyarımlarıdırlar. Günümüzde, bu temel parçacıkları ve alanları dinamikleriyle birlikte açıklayan en etkin teori Standart Model olarak adlandırılmaktadır. Bu yüzden günümüz parçacık fiziği genellikle Standart Modeli ve onun olası uzantılarını inceler.

<span class="mw-page-title-main">Mıknatıs</span> manyetik alan üreten nesne veya malzeme

Mıknatıs ya da demirkapan, manyetik alan üreten nesne veya malzemedir. Demir, nikel, kobalt gibi bazı metalleri çeker, bakır ve alüminyum gibi bazı metallere ve metal olmayan malzemelere etki etmez.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Parçacık hızlandırıcı</span>

Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.

Elektriksel potansiyel enerji, bir "" Elektriksel yük'ünün Elektriksel alan içerisindeki konumuna bağlı olarak depoladığı bir potansiyel enerji çeşididir.

<span class="mw-page-title-main">Manyetizma</span> class of physical phenomena

Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir. Çünkü kalıcı mıknatıs ilk olarak “manyetit – Fe3O4” adı verilen demir elementinin doğal bir formu olarak gözlemlenmiştir. Çoğu madde kalıcı momente sahip değildir. Bazıları manyetik alan tarafından çekilirken (paramanyetizm); bazıları manyetik alan tarafından itilir (diyamanyetizm). Bazıları ise herhangi bir manyetik alana maruz kaldığında daha karmaşık durumlara sevk olur. Manyetik alan tarafından ihmal edilecek ölçüde etkilenen maddeler ise manyetik olmayan maddeler olarak bilinir. Bunlar bakır, alüminyum, gazlar ve plastiktir. Ayrıca, saf oksijen sıvı hale kadar soğutulduğunda manyetik özellikler gösterir.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

<span class="mw-page-title-main">Hareket eden mıknatıs ve iletken problemi</span> düşünce deneyi

Hareketli mıknatıs ve iletken problemi 19. yüzyılda ortaya çıkan, klasik elektromanyetizma ve özel görelilik kesişimi ile ilgili ünlü bir düşünce deneyidir. Mıknatısa göre sabit hız (v) ile hareket eden iletkendeki akım, mıknatısın ve iletkenin referans sistemlerinde hesaplanır. "Sadece "göreli" hareket gözlemlenebilir, diğerlerinin mutlak bir standardı yoktur." diye belirten temel görelilik ilkesi doğrultusunda, deneydeki gözlemlenebilir miktar olan akım, her durumda aynıdır. Ancak, Maxwell denklemlerine göre, iletkendeki yük, mıknatıs referans sisteminde "manyetik kuvvete" ve iletken referans sisteminde "elektrik kuvvetine" maruz kalır. Aynı olgu, gözlemcinin referans sistemine bağlı olarak iki farklı tanımları var gibi görünebilir.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

Bir kuadrupol veya dört kutuplu genellikle daha karmaşık bir yapının çeşitli düzenlemelerini yansıtan çok kutuplu genişlemenin bir parçasıdır. Örnekle açıklamak gerekirse, kuadrupol elektrik yükü, elektrik akımı ya da ideal formunda bulunan çekim kütlesinin birer konfigürasyon dizisidir.