İçeriğe atla

Müon

Müon
BileşimTemel parçacık
AileFermiyon
Nesilİkinci
Etkileşim(ler)Zayıf Kuvvet, Elektromanyetik, Yerçekimi
AntiparçacıkAntimüon
KeşifCarl D. Anderson, 1936
Kütle105.66 (9) MeV/c2
Elektrik yükü-1 elektron yükü
Renk yüküYok
Spin½

'Müon (ya da muon, Yunanca μ harfi ile gösterilir), elektron benzeri-1 e yük ve 1/2 spinli ancak daha yüksek kütleye sahip bir temel parçacık. Müon parçacığı, lepton olarak sınıflandırılmıştır. Diğer leptonlar gibi, Müonun da daha küçük parçacıklara (kuarklar gibi) indirgenemeyen bir parçacık olduğu düşünülmektedir.

Müon, ortalama ömrü 2.2 µs olan kararsız bir atom altı parçacıktır. Diğer tüm bilinen kararsız atom altı parçacıklar arasında sadece nötron (15 dakika civarı) ve birkaç atom çekirdeği söz konusu parçacıktan daha uzun bozunma ömrüne sahiptir.

Müon (aynı zamanda nötron) bozunması özellikle Zayıf Nükleer Kuvvet aracılığı ile gerçekleşir. Bu bozunma sonucu, daima bir elektron ve iki nötrino olmak üzere üç parçacık açığa çıkar.

Diğer tüm temel tanecikler gibi, müonun da ters yüke (+1 e) ve aynı kütle ve spine sahip karşıt bir parçacığı bulunmaktadır. Bu karşıt parçacığa antimüon veya pozitif müon adı verilir. Müonlar μ− ve antimüonlar μ+ sembolleri ile ifade edilir. Önceleri Mü mezonları denilen bu parçacıklar, parçacık fizikçileri tarafından mezon olarak sınıflandırılmadıklarından, artık bu isimle anılmazlar.

Müonların kütleleri 105.66 (9)MeV/c2 civarındadır (elektronun kütlesinin yaklaşık 207 katı). Müonlar daha yüksek kütleye sahip olduklarından, bir elektromanyetik alanla karşılaştıklarında elektronlar kadar hızlı ivmelenemez veya bremsstrahlung (yavaşlama ışıması) yaymazlar. Elektronların ve müonların yavaşlamaları öncelikle bremsstrahlung mekanizması ile enerji kaybına bağlı olduğundan, bu durum müonlara maddeye çok daha derinlemesine nüfuz etme özelliğini verir. Bu duruma bir örnek olarak kozmik ışınların atmosfere çarpması sonucu meydana gelen sözde "ikincil müonlar"ın Dünya'nın yüzeyine ve hatta daha derinlere nüfuz etmesi gösterilebilir.

Müonların kütle ve enerjileri radyoaktif bozunma enerjisinden çok daha fazla olduğundan, asla radyoaktif bozunma sonucu oluşmazlar ancak normal maddede gerçekleşen yüksek enerji etkileşimleri ile, hadronlar ile yapılan bazı parçacık hızlandırıcıları deneylerinde veya kozmik ışınların madde ile etkileşmesi sonucu bol miktarda üretilirler. Söz konusu etkileşimler genellikle, bir süre sonra müonlara bozunan pi mezonlarını üretirler.

Diğer yüklü leptonlarda olduğu gibi, müonlarla da ilişkilendirilmiş müon nötrinoları bulunur. Müon nötrinoları, elektron nötrinolarından farklıdır ve aynı nükleer tepkimelerde bulunmazlar.

Tarih

Müonlar 1936 yılında Carl D. Anderson ve Seth Neddermeyer tarafından Caltech'de yapılan kozmik ışıma üzerine yapılan çalışmalar sırasında bulunmuştur. Anderson, bir manyetik alandan geçtiğinde elektronlardan ve diğer tüm bilinen parçacıklardan daha farklı eğimlenen parçacıklar fark etmişti. Bu parçacıklar eksi yüklüydü ve aynı hıza sahip elektronlardan daha az, protonlardan ise daha keskin eğim kazanmaktaydı. Bu parçacıkların eksi yüklerinin büyüklükleri elektronlarınkiyle aynı olduğu, eğimlenmelerindeki farkın da kütlelerinin elektronun kütlesinden daha fazla, protonun kütlesinden ise daha az olmasından kaynaklandığı varsayılmıştı. Böylece bu yeni parçacığa mesotron adı verildi. Müonların varlığı 1937 yılında J. C. Street ve E. C. Stevenson tarafından yapılan bulut odası deneyi ile kanıtlanmıştır.

Herhangi bir mezonun keşfinden çok önce, mezon aralığında kütleye sahip bir parçacığın varlığı teorik fizikçi Hideki Yukawa tarafından öngörülmüştü.

Mü mezonları önceleri Yukawa tarafından öngörülen parçacıklar oldukları sanıldı fakat daha sonra farklı özelliklere sahip oldukları anlaşıldı. Yukawa'nın parçacıkları olan pi mezonları 1947 yılında, yine kozmik ışınlarla olan etkileşimi sayesinde tanımlandı ve daha önce keşfedilen mü mezonlarından farklı olduğu öngörülen özelliklere sahip olması ve nükleer kuvvet ile etkileşime geçmesinden anlaşıldı.

Bu iki parçacığın bilinmesi ile daha genel bir terim olan mezon terimi, elektron ile nükleon arasında kütleye sahip olan tüm parçacıkları tanımlamak için kullanılmaya başlandı. Sonraları, iki parçacığın arasındaki farkı netleştirmek üzere ilk bulunan parçacığa mü mezonu, 1947'de bulunan Yukawa'nın parçacığına ise pi mezonu adları verildi.

Sonraları hızlandırıcı deneyleri sayesinde daha fazla sayıda mezon tipi bulundukça mü mezonlarının sadece pi mezonlarından değil, diğer tip mezonlardan da ciddi farklılıkları olduğu anlaşılmaya başlandı. Farklılıklardan biri, pi mezonları nükleer kuvvet ile etkileşime girerken, mü mezonlarının girmemesiydi. Yeni bulunan mezonlar da pi mezonlarına benzer davranışlar sergilemekteydi. Ayrıca, diğer mezonların bozunumunda nötrino veya antönötrino parçacıklarından biri ortaya çıkarken, mü mezonunun bozunumunda ikisi birden ortaya çıkmaktaydı.

1970'lerde Standart Model yardımıyla mü mezonları dışında tüm mezonların kuarklardan meydana gelen parçacıklar olan hadronlar oldukları ve nükleer kuvvet ile etkileşime girdikleri anlaşıldı. Kuark modelinde mezonlar kütleleri ile tanımlanan parçacıklar olmaktan çıkartılmış, tam olarak iki kuarktan meydana gelen (bir kuark ve bir antikuark) tanecikler olarak tanımlanmışlardır. Ancak mü mezonları, elektronlar gibi kuark yapısı olmayan temel tanecik (lepton) özelliği göstermektedirler. Böylece mü mezonlarının, kuark modeliyle yeniden tanımlanan mezonlar olmadıkları anlaşılmıştır.

Müonlar 1941 yılında Rossi-Hall deneyinde özel göreliliğin zaman genleşmesi öngörüsünü gözlemlemek üzere kullanıldılar.

Müon oluşumu

Dünya yüzeyine ulaşan müonlar, kozmik ışınların üst atmosferde bulunan parçacıklar ile çarpışmaları sonucu dolaylı olarak meydana gelen bozunma ürünü parçacıklardır.

Kozmik ışınlarla taşınan protonlar dış atmosferde bulunan atomların çekirdekleri ile çarpıştığında pionlar meydana gelir. Bu parçacıklar görece kısa mesafelerde müonlara ve müon nötrinolarına bozunurlar. Bu yüksek enerjili kozmik ışınlardan meydana gelen müonlar genelde başlangıçtaki proton ile aynı doğrultuda ve ışık hızına yakın hızlarda hareket ederler. Görelilik etkisi olmadan ömürleri sadece 456 metre kat etmelerine izin verirken, özel göreliliğin doğrudan bir sonucu olan zaman genleşmesi sayesinde, yüzeye ulaşmasına yetecek kadar ömürleri vardır. Müonun referans sisteminden ise, genleşen zaman değil, yine özel göreliliğin bir sonucu olan mesafe kısalması sayesinde, dış atmosferden dünya yüzeyine olan mesafe çok daha kısa gözükmektedir. Her iki olay da ışık hızına yakın hızlarda hareket eden müonun gereğinden fazla olan ömrünü açıklamak için eşit derecede geçerlidir.

Müonlar, nötrinolar gibi, maddeye çok derinlemesine nüfuz edebildiğinden, yer altından ve su altından tespit edilebilirler. (Soudan 2 detektörü yerin 700 m. altındadır).

Burada doğal arka plan iyonize radyasyonun büyük bir bölümünü müonlar oluştururlar.

Müon bozunması

Müonlar elektronlardan ve nötrinolardan daha ağır fakat diğer maddesel parçacıklardan daha hafiz olan kararsız temel taneciklerdir ve Zayıf Nükleer Kuvvet aracılığıyla bozunurlar. Bozunma sonucu Lepton sayılarının korunması gerektiğinden, bozunma ürünü olarak meydana gelen nötrinolardan biri müon tipi nötrino, diğeri elektron tipi antinötrino olmak zorundadır. Aynı zamanda elektriksel yükün de korunması gerektiğinden, müon ile aynı elektrik yüküne sahip bir elektron (pozitif bir müon ise bir pozitron) meydana gelmelidir. Dolayısı ile tüm müonlar en azından bir elektron ve iki nötrinoya bozunurlar. Bazenleri bu zorunlu ürünlerin yanı sıra, net yüke sahip olmayan ve sıfır spinli yan ürünler de meydana gelebilmektedir. (bir foton çifti veya bir elektron-pozitron çifti gibi)

Baskın müon bozunması (Louis Michel'in ardından Michel bozunması olarak da bilinir), olası en basit şekildedir; müon bir elektrona, bir elektrok antinötrinosuna ve bir müon nötrinosuna bozunur. Antimüonlar ise, tam tersi olarak bir pozitron, bir elektron nötrinosu ve bir müon antinötrünosuna bozunur. Bu bozunumun formülasyonu aşağıdaki gibidir;

μ-→e + νe + νμ

μ+ → e+ + νe + νμ

Müonun ortalama ömrü, τ = 1/Γ, (2.1969811±0.0000022 ) µs olarak bulunur.

Mümkün olmayan bozunmalar

Bazı nötrinosuz bozunmalar kinematik olarak mümkün olmakla birlikte, Standart Modelde yasaklanmıştır. Örnekleri;

μ → e + γ

μ → e + e+ + e

Benzeri bozunmaların gözlenmesi, Standart Modelin ötesine uzanan teorilere açık kanıt oluşturabilir. Bu şekilde meydana gelen bozunmaların üst limitleri, 50 yıl önce gerçekleştirilen birçok deneyde belirlenmiştir. Halihazırda μ+ → e+ + γ bozunması için üst limit, 2013 yılında MEG deneyi tarafından 5.7 x 10−13 olarak ölçülmüştür.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Atom</span> tüm maddelerin kimyasal ve fiziksel özelliklerini taşıyan en küçük yapıtaşı

Atom veya ögecik, bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapı taşıdır. Atom Yunancada "bölünemez" anlamına gelen "atomos"tan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünelleme mikroskobu vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

<span class="mw-page-title-main">Parçacık fiziği</span>

Parçacık fiziği, maddeyi ve ışınımı oluşturan parçacıkların doğasını araştıran bir fizik dalıdır. Parçacık kelimesi birçok küçük nesneyi andırsa da, parçacık fiziği genellikle gözlemlenebilen, indirgenemez en küçük parçacıkları ve onların davranışlarını anlamak için gerekli temel etkileşimleri araştırır. Şu anki anlayışımıza göre bu temel parçacıklar, onların etkileşimlerini de açıklayan kuantum alanlarının uyarımlarıdırlar. Günümüzde, bu temel parçacıkları ve alanları dinamikleriyle birlikte açıklayan en etkin teori Standart Model olarak adlandırılmaktadır. Bu yüzden günümüz parçacık fiziği genellikle Standart Modeli ve onun olası uzantılarını inceler.

<span class="mw-page-title-main">Proton</span> artı yüke sahip atom altı parçacık

Proton, atom çekirdeğinde bulunan artı yüklü atomaltı parçacıktır. Elektronlardan farklı olarak atomun ağırlığında hesaba katılacak düzeyde kütleye sahiptirler. Şimdiye kadar Protonların İki yukarı bir aşağı kuarktan oluştuğu kabul edilse de yeni yapılan bilimsel çalışmalarda araştırmacılar protonun kütlesinin yüzde 9'unun kuarkların ağırlığından, yüzde 32'sinin protonun içindeki kuarkların hızlı hareketlerinin meydana getirdiği enerjiden, yüzde 36'sının protonun kütlesiz parçacıkları olan ve kuarkları bir arada tutmaya yardımcı olan gluonların enerjilerinden, geriye kalan yüzde 23'lük bölümünse kuarkların ve gluonların protonun içinde karmaşık şekillerde etkileşimlerde bulunduklarında meydana gelen kuantum etkimelerden oluştuğunu buldular. Evrendeki bütün protonlar 1,6 x 10−19 değerinde pozitif yüke sahiptirler. Bu, atomlardaki çeşitli protonların birbirlerini itmelerini sağlar. Ama aradaki çekim, itmeden 100 kez daha güçlü olduğu için protonlar birbirlerinden ayrılmazlar. Protonun kütlesi elektronunkinden 1836 kat fazladır. Buna karşın, bilinmeyen bir nedenden ötürü elektronun yükü protonunkiyle aynıdır: 1,6 x 10−19 C. Atom içinde her biri (+1) pozitif elektrik yükü taşıyan taneciğe proton denir. Bu yüke yük birimi denir. Protonun yüklü elektronun yüküne eşit fakat ters işaretlidir.Bir protonun yoğunluğu yaklaşık olarak 4 x 1017 Kg/m³ 'tür. (2,5 x 1016 Lb/Ft3)

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Kuark</span> Temel parçacık türü

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.

<span class="mw-page-title-main">Atomaltı parçacık</span> Atomdan küçük, atomu da oluşturan maddeler.

Atomdan küçük, atomu da oluşturan maddeler. En çok bilinenleri, alt parçacıklardan (kuarklardan) oluşan proton ve nötron; lepton olan elektrondur. Yapısı tamamen keşfedilmemiş atomaltı parçacıklara örnek olarak foton (ışık), bozon, mezon, fermiyon, baryon ve graviton verilebilir.

<span class="mw-page-title-main">Mezon</span>

Mezonlar, güçlü etkileşim ile bağlı bir kuark ve bir antikuarktan oluşan hadronik atomaltı parçacıklardır. Atomaltı parçacıklardan oluştuklarından mezonlar, kabaca bir femtometre kadarlık bir yarıçaplı fiziksel bir boyuta sahiptirler. Bütün mezonlar kararsızdırlar ve en uzun ömürlüsü mikrosaniyenin altında bir ömre sahiptir. Yüklü mezonların bozunmasıyla elektron ve nötrino oluşur. Yüksüz mezonların bozunmasıyla da fotonlar oluşur.

Tau; tau leptonu, tau parçacığı veya tauon olarak adlandırılır. Tau negatif yüklü, elektron benzeri bir temel parçacıktır. Yarım spinlidir. Elektron, müon ve üç nötrinolara birlikte tau lepton kategorisindedir. Tau da tüm parçacıklar gibi, bir antimadde karşılığına sahiptir; Tau'nun bu durumuna "antitau" denir..

Lepton, temel parçacıklardan birisidir ve maddenin yapı taşıdır. En çok bilinen lepton, atomda bulunarak atomun kimyasal özelliklerini belirleyerek neredeyse tüm kimyayı oluşturan elektrondur. İki temel lepton sınıfı vardır: yüklü leptonlar ve nötr leptonlar. Yüklü leptonlar diğer parçacıklarla birleşerek atom ya da pozitronyum gibi bileşik parçacıklar meydana getirirken nötrinolar diğer parçacıklarla etkileşime girmezler ve bu sebepten algılanmaları çok zordur.

<span class="mw-page-title-main">Hideki Yukava</span> Japon teorik fizikçi

Hideki Yukava , Japon fizikçi.

<span class="mw-page-title-main">Nükleer fizik</span> atom çekirdeğinin yapısı ve davranışı ile uğraşan fizik alanı

Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.

<span class="mw-page-title-main">Nötrino</span> atom altı ya da temel parçacıklardan biri

Nötrino, ışık hızına yakın hıza sahip olan, elektriksel yükü sıfır olan ve maddelerin içinden neredeyse hiç etkileşmeden geçebilen temel parçacıklardandır. Bu özellikleri nötrinoların algılanmasını oldukça zorlaştırmaktadır. Nötrinoların çok küçük, ancak sıfır olmayan durgun kütleleri vardır. Yunan alfabesindeki ν (nü) ile gösterilir.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

<span class="mw-page-title-main">Pion</span>

Parçacık fiziğinde pion π0, π+ ve π'den oluşan üç atom atomaltı parçacığın ortak adıdır. Pionlar en hafif mezonlardır ve güçlü nükleer kuvvetin düşük enerjili durumlarını açıklamakta önemli bir rolü vardır.

<span class="mw-page-title-main">Çerenkov radyasyonu</span>

Çerenkov ışıması ya da Çerenkov radyasyonu elektrik yüklü bir parçacığın bir yalıtkan içerisinden bulunduğu ortamdaki ışık hızından daha büyük bir sabit hızda geçerken ortaya çıkan bir elektromanyetik ışımadır.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

<span class="mw-page-title-main">Nesil (parçacık fiziği)</span>

Parçacık fiziğinde nesil veya aile temel taneciklerin oluşturduğu şubelerden her birine verilen addır. Nesillerde yer alan parçacıklar yalnızca kütleleri ile birbirlerinden ayrılırlar. Bütün etkileşimler ya da kuantum sayıları aynıdır.

Üst kuark, parçacık fiziğinde Standart Model'de tanımlanan bir parçacık. +2/3 elektrik yüküne sahip üçüncü kuşak kuarktır. 171,2 GeV/c2 kütleye sahip temel parçacık.

Kuramsal fizikte, parçacıksız fizik, parçacık fiziğindeki Standart Model ile açıklanamayan ve bileşenleri ölçeklere göre değişmeyen varsayımsal maddelerin olduğu şüpheli bir kuramdır, Howard Georgi bu kuramını Parçacıksız Fizik ve Parçacıksız Fizik Hakkındaki Diğer Gariplikler makalesi ile 2007'de ortaya atmıştır. Makalelerini, görüngübilimini, parçacıksız fiziğin özelliklerini ve parçacık fiziği, astrofizik, kozmoloji, CP bozması, lepton bozması, müon bozunması, nötrino salınımı ve süpersimetriyi de araştırmasıyla birlikte düzenli olarak yayınlamıştır.

CEBAF Büyük Kabul Spektrometresi (CLAS), Newport News, Virginia, Amerika Birleşik Devletleri'nde bulunan Jefferson Laboratuvarı'ndaki deneysel Hall B'de bulunan bir nükleer ve parçacık fiziği dedektörüdür. Dünyanın birçok ülkesinden 200'den fazla fizikçinin işbirliğiyle nükleer maddenin özelliklerini incelemek için kullanılır.