İçeriğe atla

Lorentz faktörü

Lorentz faktörü veya Lorentz terimi bir cismin herhangi bir hıza sahip olmadığı durumla bir hıza sahip olması sırasında kütle, zaman ve uzay ölçümlerinde oluşacak ölçüm farklılıklarını açıklayan niceliktir. Lorentz faktörü, referans çerçeveleri arasında dönüşüm yapılabilmesini sağlayan Lorentz dönüşümünden doğar. Faktör, Lorentz elektrodinamiği içindeki erken görünümü yüzünden Hollandalı fizikçi Hendrik Lorentz adına ithaf edilmiştir.[1]

Lorentz faktörünün aynı anda her yerde bulunması nedeniyle, genel olarak γ (Yunanca küçük gama) sembolü ile gösterilmiştir. Faktör bazen (özellikle Işıktan hızlı hareketin tartışmasında) γ yerine daha çok Γ (Yunanca büyük-gama) olarak yazılır.

Tanım

Lorentz faktörü matematiksel olarak şöyle tanımlanır:[2]

burada:

  • v bağıl hızdır,
  • c Işığın vakumda sahip olduğu hızdır (ışık hızı).
  • β v'nin c'ye bölümüdür.
  • t zaman koordinatıdır.
  • τ bir gözlemcinin kendi referans sisteminde gözlemlediği zaman aralığıdır. (en:Proper time)

Bu, tanımlamanın sadece bir yolu olsa da, uygulamada en çok kullanılan formudur. Tanımın alternatif formları için aşağıya bakınız.

Tanımı tamamlamak için, bazı yazarlar şöyle tanımlar:[3]

bakınız hız ekleme formülü (Velocity-addition formula).

Lorentz faktörünün kullanımı

Aşağıda özel görelilikte Lorentz faktörünün γ olarak kullanıldığı bazı formüller gösterilmiştir:[2][4]

  • Lorentz dönüşümü: En basit durumda x-ekseninde referans çerçeveleri arasında düzgün doğrusal hareket (v) olduğunda bir eylemsiz referans çerçevesinden (x, y, z, t) diğer eylemsiz referans çerçevesine (x′, y′, z′, t′) göre uzayzaman koordinatlarının nasıl değiştiğini açıklar. X-ekseni dışındaki eksenler burada gösterilmemiştir.

Yukarıdaki dönüşümlerin sonuçları şunlardır:

  • Zaman genişlemesi: Hareket eden referans çerçevesindeki birim zaman (∆t′) hareket etmeyen referans çerçevesindeki birim zamandan (∆t) daha uzundur:

  • Uzunluk kısalması: Bir cismin eylemsiz referans çerçevesine göre düzgün doğrusal hareket yaparken sahip olduğu birim uzunluk (∆x′) cismin eylemsiz referans çerçevesine göre hareketsiz olduğu zamanki birim uzunluğundan (∆x), kısadır. Cismin kendi durağan referans çerçevesinde de birim uzunluk ∆x olacağından hızlanan cisimlerin hız doğrultusunda kısalacağı söylenebilir.

Momentum ve enerjinin korunumu şu sonuçlara yol açar:

  • Göreli kütle: Cismin eylemsiz referans çerçevesine göre düzgün doğrusal hareket yaparsa sahip olacağı kütle m cismin durgun kütlesi m0'dan büyüktür:

  • Göreli momentum: Göreli momentum ilişkisi klasik momentumla aynı formu alır fakat klasik kütle yeni göreli kütle kullanır:

  • Göreli kinetik enerji: Göreli kinetik enerji cismin hareket halindeyken sahip olduğu toplam enerjiden cisim hareketsizken sahip olduğu toplam enerjinin çıkartılmasına eşittir.

Lorentz faktörü () 'nin bir fonksiyonu olduğundan, göreli olmayan limit olarak bulunur. Bu, kinetik enerjinin klasik mekanikteki halidir.

Sayısal değerler

Hızın bir fonksiyonu olarak Lorentz faktörünün grafiği. Lorentz faktörünün başlangıç değeri 1 (v = 0 olduğunda) olur. Hız ışık hızına yaklaştıkça (v c) Lorentz faktörü sınırsız olarak artar (γ→ ∞).

Aşağıdaki tabloda sol sütunda β, orta sütunda Lorentz faktörü, son sütunda Lorentz faktörünün tersi gösterilmiştir.

Hız (c'türünden)Lorentz faktörüTersi
0.0001.0001.000
0.1001.0050.995
0.2001.0210.980
0.3001.0480.954
0.4001.0910.917
0.5001.1550.866
0.6001.2500.800
0.7001.4000.714
0.8001.6670.600
0.8662.0000.500
0.9002.2940.436
0.9907.0890.141
0.99922.3660.045

Lorentz faktörünün alternatif temsilleri

Lorentz faktörünü yazmak için başka yollar da vardır. Yukarıda v hızı kullanıldı ama hız gibi momentum ve β de tanımlamak için uygundur.

Momentum

Göreli momentum formülünü Lorentz faktörü için çözmek şu formüle yol açar:

Bu forma çok sık rastlanılmaz fakat Maxwell-Jüttner dağılımı bu formu kullanır.[5]

Hız oranı

Hız oranının () tanımının Hiperbolik açı φ ile yapılması:[6]

Ayrıca γ (hiperbolik özdeşliklerin) kullanımı ile şuna yol açar:

Seri açılımı (hız)

Lorenz faktörünün bir Maclaurin serisi vardır:

Lorentz faktörünü γ ≈ 1 + 1/2 β2 olarak almak düşük hızlarda göreli etkileri hesaplamak için kullanılabilir. v < 0.4 c (v < 120,000 km/s) için %1 hata payı ve v < 0.22 c (v < 66,000 km/s) için de %0.1 hata payı anlamına gelir.

Bu dizinin kısaltılmış versiyonları fizikçilerin özel göreliliğin düşük hızlarda klasik mekaniğe indirgendiğinin kanıtlamasını sağlar. Özel göreliliğin, aşağıdaki iki denklemi düşünülsün:

γ ≈ 1 ve γ ≈ 1 + 1/2 β2, için sırasıyla, bu onların klasik mekanikteki eşdeğerine indirger:

Lorentz faktörü denklemi ayrıca şu şekilde tekrar yazılabilir:

Lorentz faktörü denkleminin şu hali asimptotik bir biçime sahiptir:

İlk iki terim zaman zaman büyük hızlı γ değerlerden hızları hesaplamak için kullanılır.

Ayrıca bakınız

Kaynakça

  1. ^ One universe 1 Kasım 2004 tarihinde Wayback Machine sitesinde arşivlendi., by Neil deGrasse Tyson, Charles Tsun-Chu Liu, and Robert Irion.
  2. ^ a b Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8
  3. ^ Yaakov Friedman, Physical Applications of Homogeneous Balls, Progress in Mathematical Physics 40 Birkhäuser, Boston, 2004, pages 1-21.
  4. ^ Young; Freedman (2008). Sears' and Zemansky's University Physics (12.12yayıncı=Pearson Ed. & Addison-Wesley bas.). ISBN 978-0-321-50130-1. 
  5. ^ Synge, J.L (1957). The Relativistic Gas. Series in physics. North-Holland. LCCN 57-003567
  6. ^ Kinematics 21 Kasım 2014 tarihinde Wayback Machine sitesinde arşivlendi., by J.D. Jackson, See page 7 for definition of rapidity.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Özel görelilik</span> izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir

Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:

  1. Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
  2. Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

Matematikte, Gauss sabiti, G ile gösterilir,1 ve karekök 2 aritmetik-geometrik ortalama'sının tersi olarak tanımlanır.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Bir elektromanyetik dalganın yayılma sabiti, verilen yönde yayılan dalganın genliğindeki değişimin bir ölçüsüdür. Ölçülen nicelik bir elektrik devresindeki gerilim veya akım olabileceği gibi elektrik alan veya akım yoğunluğu gibi bir alan vektörü de olabilir. Yayılma sabiti metre başına değişimin bir ölçüsü olmasının yanı sıra boyutsuz bir niceliktir.

<span class="mw-page-title-main">Hareket eden mıknatıs ve iletken problemi</span> düşünce deneyi

Hareketli mıknatıs ve iletken problemi 19. yüzyılda ortaya çıkan, klasik elektromanyetizma ve özel görelilik kesişimi ile ilgili ünlü bir düşünce deneyidir. Mıknatısa göre sabit hız (v) ile hareket eden iletkendeki akım, mıknatısın ve iletkenin referans sistemlerinde hesaplanır. "Sadece "göreli" hareket gözlemlenebilir, diğerlerinin mutlak bir standardı yoktur." diye belirten temel görelilik ilkesi doğrultusunda, deneydeki gözlemlenebilir miktar olan akım, her durumda aynıdır. Ancak, Maxwell denklemlerine göre, iletkendeki yük, mıknatıs referans sisteminde "manyetik kuvvete" ve iletken referans sisteminde "elektrik kuvvetine" maruz kalır. Aynı olgu, gözlemcinin referans sistemine bağlı olarak iki farklı tanımları var gibi görünebilir.

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

<span class="mw-page-title-main">Işıktan hızlı hareket</span>

Astronomide, ışıktan hızlı hareket bazı radyo galaksilerin, kuasarların ve yakın zamanda bazı galaktik kaynaklarda denilen mikrokuasarlarda görülen görünüşte ışıktan daha hızlı hareket olduğudur Bu kaynakların hepsi yüksek hızlarda kütlesinin fırlamasından sorumlu bir kara delik içerdiği düşünülmektedir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Elektromanyetik kütle başlangıçta, elektromanyetik alanın ya da öz-enerjinin ne kadar olduğunu gösteren, yüklü parçacıkların kütlesine katkıda bulunan, bir klasik mekanik kavramıydı. İlk defa 1881 yılında J.J. Thomson tarafından elde edildi ve bir süreliğine tek başına eylemsizlik kütlesinin dinamik açıklaması olarak da kabul edildi. Bugün, kütle, momentum, hız ve tüm enerji çeşitlerinin ilişkileri, elektromanyetik enerji de dahil, Albert Einstein'ın özel görelilik ve kütle-enerji eşdeğerliği bazında incelenmektedir. Temel parçacıkların kütle nedeni olarak, göreceli Standart Model çerçevesinde Higgs mekanizması halen kullanılmaktadır. Ayrıca, yüklü parçacıkların elektromanyetik kütle ve iç enerjileri ile ilgili problemler hala araştırılmaktadır.

<span class="mw-page-title-main">Göreli Doppler etkisi</span>

Relativistik Doppler Etkisi ya da Göreli Doppler etkisi, adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'dan almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans dalga boyu Dalga boyu, bir dalga görüntüsünün tekrarlanan birimleri arasındaki mesafedir. Yaygın olarak Yunanca lamda (λ) harfi ile gösterilmektedir. hareketli bir gözlemci tarafından farklı zaman ve/veya konumlarda farklı algılanması olayıdır. Bu da göreli olduğunu belirtir. Herhangi bir A konumundan B konumuna gitmek icin fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar icin Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga ortamının da fiziksel yapısı dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir. Göreli doppler olayı değişikliği olduğu frekansa ışık kaynağının göreceli hareketine göredir ve, Göreli Doppler etkisi relativistik olmayan farklı Doppler etkisi denklemleri dahil olarak zaman genişlemesi etkisini özel görelilik ve referans noktası olarak yayılma ortamı dahil değildir. Lorentz simetri gözlenen frekanslar için toplam farkı anlatır.

<span class="mw-page-title-main">Bell'in Uzay Gemisi Paradoksu</span>

Bell'in uzay gemisi paradoksu özel görelilikte bir düşünce deneyidir. Bu deney ilk olarak E. Dewan ve M. Beran tarafından 1959 yılında tasarlanmıştır ve J. S. Bell geliştirilmiş halini deneye dahil edince geniş ölçüde tanınır hale gelmiştir. Hassas bir ip veya tel iki uzay gemisini birbirine bağlar. Her iki uzay gemisi, eylemsiz çerçeve olarak belirlenen S’ye göre ölçüldüğünde eşit olarak ve aynı anda ivmelenmeye başlarlar, böylece S’deki tüm zamanlarda aynı hıza sahip olurlar. Bu nedenle, uzay gemileri aynı uzunluk daralmasına bağlı kalırlar. Böylece tüm sistemin S referansında başlangıçlardaki uzunluklarına göre eşit olarak daraldığı görülür. Bu nedenle, ilk bakışta, telin ivmelenme boyunca kırılmaması beklenir.