İçeriğe atla

Lineer interpolasyon

Kontrol Edilmiş
İki kırmızı nokta, datanın değerini bildiğimiz koordinatlar ve mavi çizgi, bu iki koordinat arasındaki lineer doğrudur. (x, y) noktasındaki bilmediğimiz data değeri iki kırmızı nokta değerlerinden lineer interpolasyon yöntemiyle bulunabilir.

Lineer interpolasyon, lineer polinomlar kullanarak, verilerin bilindiği noktalardan yeni verilerin üretilmesini sağlayan bir eğri uydurma metodudur.

Bilinen iki nokta arasında lineer interpolasyon

Bu geometrik gösterimde, yeşil noktanın değerinin kırmızı ve mavi noktalar arası uzaklık ile çarpımı, kırmızı nokta değerinin yeşil ve mavi noktaları arası uzaklık ile çarpımı ila mavi nokta değerinin yeşil ve kırmızı noktaları arası uzaklık ile çarpımının toplamına eşittir.

Koordinatları ve olan bilinen iki nokta arasındaki düz çizgi, lineer interpolant olarak isimlendirilir. aralığındaki bir x değeri için, düz çizgi üzerindeki y değeri aşağıdaki denklem ile verilir:

Bu denklem, geometrik olarak sağdaki figürden türetilebilir. Lineer interpolasyon, polinom interpolasyonun n = 1'e ait özel çözümüdür.

Yukarıdaki denklem x'e ait bir bilinmeyen olan y değeri için çözülürse:

Bu formül, aralığı için lineer interpolasyon formülüdür. Aralığın dışında ise, formül lineer ekstrapolasyon formülü haline gelir.

Bu formül, aynı zamanda, ağırlıklı ortalama (İng. "weighted average") olarak düşünülebilir. Ağırlıklar değer aralığı uç noktalarından bilinmeyen noktaya olan uzaklıkla ters orantılıdır. Bir başka deyişle, yakın bir nokta uzak bir noktaya göre daha fazla ağırlığa (etkiye) sahiptir.

Ağırlıklar, ve olarak ifade edilebilir. Bu terimler, bilinmeyen noktadan, değer aralığı uç noktalarına olan normalize uzaklıktır. Terimlerin toplamı 1'e eşit olduğundan, yukarıda elde edilen lineer interpolasyon formülü şu şekilde türetilebilir:

Bir data setinin interpolasyonu

Bir veri seti (kırmızı noktalar) lineer interpolasyonu, lineer interpolant parçalarından (mavi çizgiler) oluşur.

(x0, y0), (x1, y1), ..., (xn, yn)'den oluşan bir data setinin lineer interpolasyonu, dataya ait nokta çiftlerinden oluşan lineer interpolantların uç uca eklenmesi olarak tanımlanır. Bu, türevi (genellikle) süreksiz, diferansiyellenebilirlik sınıfı olan bir sürekli eğriyi üretir.

Yaklaşım (approximation) olarak lineer interpolasyon

Lineer interpolasyon, sıkça, iki noktada değeri bilinen bir f fonksiyonunun bir değerini yaklaşık olarak hesaplamakta kullanılır. Bu yaklaşıma ait hata (İng. "error") aşağıdaki gibi tanımlanır:

Bu denklemde, p lineer interpolasyonun polinomudur:

Hata sınırları, eğer f sürekli bir ikinci türeve sahipse, Rolle teoremi kullanılarak aşağıdaki gibi hesaplanabilir:

Görüleceği üzere, bir fonksiyona ait iki nokta arasındaki bir yaklaşımın niteliği, fonksiyonun ikinci türevine bağlıdır. Dolayısıyla, sert ve çok kıvrımlara sahip bir fonksiyon, az kıvrımlara sahip bir fonksiyona göre, lineer interpolasyonla, daha az bir nitelikte bir (kötü) yaklaşımı üretilebilir.

Uygulamalar

Lineer interpolasyon, genellikle bir değer tablosundaki ara boşlukları doldurmak için kullanılır. Örneğin, bir ülkenin 1970, 1980, 1990 ve 2000 yılındaki nüfusunu veren bir tablodan, 1994 senesi nüfusunu tahmin etmek, lineer interpolasyon ile mümkün olabilir.

Yanı sıra, bilgisayar grafik uygulamalarında lineer interpolasyon sıklıkla kullanılır. Lineer interpolasyon, bu konunun teknik jargonunda, bazen lerp olarak adlandırılır. Bu terim, İngilizcede fiil ya da isim olarak kullanılabilir: ör. "Bresenham's algorithm lerps incrementally between the two endpoints of the line."

Lerp fonksiyonu, tüm modern bilgisayar grafik işlemcilerinin donanımına yükleniktir. Sıklıkla, bunlar daha karmaşık fonksiyonların yapıtaşı olarak kullanılır: örneğin, bir bilineer interpolasyon üç lerp ile tamamlanır. Bu fonksiyonun kullanılmasına, (kaynakları kullanma seviyesi olarak) ucuz ve kolay olduğu için, sürekli fonksiyonlarda hızlıca arabul için çok fazla maddeye (elemana ya da data noktasına) ihtiyaç duymadan doğruluk seviyesi yüksek bir başvuru çizelgesi yaratılmasında başvurulabilir.

Ek konular

Lineer, bilineer ve 1- ila 2-boyutlu interpolasyonların mukayesesi. Sırası ile, siyah ve kırmızı/sarı/yeşil/mavi noktalar interpole edilmiş nokta ile komşu noktaları göstermektedir. Yükseklikler, noktaların değerlerini temsil etmektedir.

Doğruluk

Eğer bir C0 fonksiyonu yetersiz ise, örneğin C0'dan daha çalkantısız data değerleri üreten bir process varsa, lineer interpolasyon çoğunlukla bağ interpolasyonu ile ya da bazı hallerde polinom interpolasyon yer değiştirir.

Çok değişkenlilik

Lineer interpolasyon, buraya kadar sadece bir konumsal boyutlu (İng. "spatial dimension") data noktaları için açıklandı. İki konumsal boyut için (düzlem), lineer interpolasyon bilineer interpolasyona; üç konumsal boyut için (hacim) trilineer interpolasyona evrilir. Dikkat edilmesi gereken husus ise, bu interpolantların artık konumsal koordinatların lineer fonksiyonu olmadığıdır. Aksine, lineer fonksiyonların çarpımlarından müteşekkildirler.

Lineer interpolasyonun diğer dönüşmüş tanımlarına, üçgensel ve dörtyüzlü meşlerde, örneğin Bézier yüzeyleri'nde rastlanabilir. Bu dönüşümler, çok-boyutlu parçalı lineer fonksiyon olarak adlandırılır (en alt figüre bakınız).

Birim bir kare üzerindeki bir bilineer interpolasyon örneği. z-değerleri 0, 1, 1 ve 0.5'tir. İnterpolasyon değerleri renkle gösterilmiştir.
İki-boyutta bir parçalı lineer fonksiyon (üstte) ve lineer formda konveks çokgenler (altta).

Tarihçe

Antik dönemlerden beri lineer interpolasyon kullanılmaktadır. Başlıca kullanım gereği astronomi data setlerindeki boşlukların doldurulmasıdır.

Babilli astronom ve matematikçilerin Seleukos Mezopotamyası'nda (milattan önce son üç yüzyıl) ve Yunan astronom ve matematikçi Hipparkos'un (M.Ö. 200 civarı) lineer interpolasyon kullanmış olduğu düşünülmektedir.

Lineer interpolasyonun bir tanımı/açıklaması Ptolemy'in Almagest adlı eserinde (M.S. 200 civarı) yer alır.

Programlama dillerinde

Pek çok library, lerp fonksiyonunu içerir: ör. verilen iki girdiden (v0,v1) kapalı birim aralık [0,1] içinde yer alan bir parametre (t) için interpolasyon çıktı edilebilir:

// Imprecise method which does not guarantee v = v1 when t = 1, due to floating-point arithmetic error.
// This form may be used when the hardware has a native Fused Multiply-Add instruction.
float lerp(float v0, float v1, float t) {
  return v0 + t*(v1-v0);
}

// Precise method which guarantees v = v1 when t = 1.
float lerp(float v0, float v1, float t) {
  return (1-t)*v0 + t*v1;
}

Bu lerp fonksiyonu alpha blending için (parametre t, alpha değeridir) sıklıkla kullanılan bir fonksiyondur. Bu formülasyon, bir vektörün çoklu bileşenlerinin harmanlanması için genişletilebilir (ör. konumsal olarak x, y, z eksenlerinde veyahut r, g, b renk bileşenlerinde).

Ayrıca bakınız

Kaynakça

  • Meijering, Erik (2002), "A chronology of interpolation: from ancient astronomy to modern signal and image processing", Proceedings of the IEEE, 90 (3), ss. 319-342, doi:10.1109/5.993400 .

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Laguerre polinomları</span>

Laguerre polinomları, matematikte adını Edmond Laguerre'den almıştır. Kanonik (benzer) adlandırma Laguerre denklemi'dir:

Bohr-Mollerup teoremi, Matematiksel analizde adını Danimarkalı matematikçi Harald Bohr ve Johannes Mollerup'tan almıştır.

Matematikte, Lambert W fonksiyonu, aynı zamanda Omega fonksiyonu veya çarpım logaritması olarak da bilinen bir fonksiyon kümesidir.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;
<span class="mw-page-title-main">Bağ interpolasyonu</span>

Spline fonksiyonu, farklı parçaların birleştirilmesi ile oluşan sürekli karakterli fonksiyonlara verilen addır. Parçalar farklı eğilimli doğru parçaları olabilecekleri gibi, doğrusal olmayan fonksiyonlar da olabilirler. Fonksiyon parçaların birleşme noktalarında kırılma gösterir. Yapısal değişikliğin incelenmesinde kullanılır.

<span class="mw-page-title-main">Bilineer interpolasyon</span>

Bilineer interpolasyon, lineer interpolasyonun iki değişkenli fonksiyonların rectilineer iki-boyutlu grid üzerinde interpolasyonu için olan uzantısıdır.

Trilineer interpolasyon, 3-boyutlu bir grid üzerinde çok-değişkenli bir interpolasyon metodudur. Trilineer interpolasyon, sıklıkla, nümerik analiz, veri analizi ve bilgisayar grafiklerinde kullanılır.

<span class="mw-page-title-main">Kuadratik formül</span>

Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.

Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

<span class="mw-page-title-main">Rolle teoremi</span> reel türevlenebilir bir fonksiyonun iki eşit değeri arasındaki durağan noktalar üzerine bir reel analiz teoremi

Kalkülüste, Rolle teoremi veya Rolle lemması temel olarak, iki farklı noktada eşit değerlere sahip herhangi bir gerçel değerli türevlenebilir fonksiyonun, aralarında bir yerde, teğet doğrusunun eğiminin sıfır olduğu en az bir noktaya sahip olması gerektiğini belirtir. Böyle bir nokta, durağan nokta olarak bilinir. Bu nokta, fonksiyonun birinci türevinin sıfır olduğu noktadır. Teorem adını Michel Rolle'den almıştır.