İçeriğe atla

Liénard-Wiechert potansiyelleri

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Bu potansiyelin ifadesi kısmî olarak 1898 yılında Alfred-Marie Liénard, bundan bağımsız olarak da 1900 yılında Emil Wiechert tarafından geliştirilmiştir. Potansiyelin genelleştirilmesi gauge teorisine göre yapılır.

Hareket eden çift kutup ve dörtlü kutupların oluşturduğu potansiyellerin açık ifadesi Lienard-Wiechert potansiyelinin noktasal yük ile olan ilişkisiyle aynı ilişki içinde olacak şekilde 1995 yılında Ribarič and Šušteršič tarafından hesaplanmıştır.

Sonuçları

Klasik elektrodinamik Einstein'ın relativite teorisinin gelişmesinde önemli bir rol oynar. Elektromanyetik dalgaların yayılış hareketinin analizi uzay-zamanın özel relativite tarafından açıklanan hâlinin keşfiyle sonuçlanmıştır. Lienard-Wiechert formülasyonunun relativistik hızlarda hareket eden parçacıkların karmaşık analizi açısından önemi büyüktür.

Lienard-Wiechert potansiyelinin çizdiği tablo büyük ölçeklerde doğru olmakla beraber kuantum seviyesindeki deneylerle örtüşmez. Kuantum mekaniği parçacıkların ışımasıyla ilgili kayda değer kısıtlamalar getirir. Lienard-Wiechert formülleriyle belirtilen klasik denklemler gözlemlerle desteklenmiş kuantum mekaniksel fenomenleri açıklayamaz. Örneğin, atomun çevresinde dönen bir elektron bu denklemlere göre ışıma yapması gerekir fakat yapmazlar (bkz. Rydberg formülü). Atomik seviyedeki bu olay enerji durumunun kuantize olmasıyla anlaşılır. 20. yy.ın ileriki onyıllarında kuantum elektrodinamiği kuantum mekaniksel kısıtlamalarla ışıma yapma özelliklerini birleştirmiştir.

Evrensel hız limiti

Elektromanyetik bilginin yayılma hızı olan c (bkz. ışık hızı) sabitinin sonlu olmasından dolayı, belirli bir r noktasında ve t zamanındaki bir parçacığa etki eden kuvvet, kuvvetin kaynağı olan parçacığın t zamanından daha önceki bir tr zamanındaki konumuna bağlıdır. Örneğin, Dünya üzerindeki yüklü bir parçacık Ay'daki parçacığın 1,5 saniye önceki hâlini görür. Bu zaman farkı Güneş ile Dünya arasında yaklaşık 500 saniyedir. Bu önceki tr zamanına geciktirilmiş zaman denir. Geciktirilmiş zaman pozisyona bağlıdır. Dünya üzerindeki bir parçacık için Ay'ın geciktirilmiş zamanı 1,5 saniye öncesi olurken Güneşinkinin 500 saniye öncesi olması bunu gösterir. Geciktirilmiş zaman, R parçacıkla kaynak arasındaki uzaklık olmak üzere matematiksel olarak aşağıdaki gibi ifade edilir.

Denklemler

Potansiyellerin matematiksel ifadesi

Gauss birimlerine göre A vektörel, skaler potansiyel alanı belirtmek üzere aşağıdaki denklemler q yüküne sahip hareketli bir noktasal parçacığın Lienard-Wiechert potansiyellerini gösterir.

and

(beta) parçacığın hızının c'ye bölünmüş hâli, parçacığın pozisyon vektörü, 'ret' ifadesi geciktirilmiş çözümleri göz önünde bulundurduğumuzu belirtiyor.

Potansiyellere karşılık gelen elektrik ve manyetik alanlar

Lienard-Wiechert potansiyelleriyle elektrik ve manyetik alanlar doğrudan hesaplanabilir.

Bu hesap birkaç adım gerektirir ve çoğu zaman oldukça karmaşıktır. Non-kovaryant formunda elektrik ve manyetik alan aşağıdaki gibi yazılabilir.

Lorentz faktörü, yükün geciktirilmiş pozisyonundan gözlemciye doğru olan birim vektör,

Formüllerin elde edilişi

pozisyonunda hızında hareket eden bir parçacık için, yükleri çevreleyen hiçbir sınır olmadığında skaler ve vektörel potansiyellerin geciktirilmiş çözümüne (cgs birimlerinde) homojen olmayan elektromanyetik dalga denkleminden hareketle ulaşılır.

Formüllerde

Dirac delta fonksiyonu iken akım ve yük yoğunluklarının ifadesi sırasıyla aşağıdaki gibidir.

Ayrıca bakınız

İlgili Araştırma Makaleleri

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

Perdeleme, hareketli yük taşıyıcılarının varlığından ortaya çıkan elektrik alanının sönümünü ifade eder. Metaller ve yarıiletkenlerdeki iletim elektronları ve iyonize olmuş gazlar(klasik plazma) gibi yük taşıyıcı akışkanlarda gözlemlenir. Elektriksel olarak yüklenmiş parçacıklardan oluşan bir akışkanda, her çift parçacık Coulomb kuvveti ile etkileşir,

.

Wheeler–Feynman soğurucu teorisi elektromanyetik alan denklemlerinin, alan denklemleri olmalarından dolay, zaman evritimi altında simetrik olmaları gerektiği fikriyle doğmuştur. Bu aksiyomun fiziğin kendi içinde var olan simetriden kaynaklanıyor. Aslında görünürde bu tarz bir simetrinin kırılıp da bir yönün diğerlerine göre daha üstün olmasına sebep olabilecek bir sebep yoktur. Böylece bu simetriyi göz önüne alan bir teori bir zaman yönelimini diğerine tercih eden teoriler arasında daha seçkin bir özelliğe sahiptir. Burada Mach prensibini andıran bir başka anahtar fikir ise elementer bir parçacığın bir başka elementer parçak üzerine doğrudan etkiyemeyeceğidir. Bu kendiliğinden öz enerji problemini ortadan kaldırır. Bu teori kendisini kuran kişilerin, Richard Feynman ve John Archibald Wheeler adını almıştır.

Kuantum mekaniği ve Kuantum alan kuramı içinde yayıcı belirli bir zamanda bir yerden başka bir yere seyahat etmek ya da belirli bir enerji ve momentum ile seyahat için bir parçacığın olasılık genliği verir. Yayıcılar Feynman diyagramları iç hatları üzerinde sanal parçacık'ların katkısını temsil etmek üzere kullanılmaktadır. Ayrıca partikül uygun dalga operatörünün tersi olarak görülebilir ve bu nedenle sıklıkla Green fonksiyonları olarak adlandırılır.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Nötrino salınımları, üretilen ve belirli bir lepton türü olan bir nötrinonun daha sonradan farklı bir tür olarak ölçülebilmesine denen bir kuantum mekaniği fenomenidir. Uzaya yayılan nötrinoların türleri periyodik olarak değişir.

Wheeler-Feynman emme teorisi, adını yaratıcıları olan fizikçiler Richard Feynman ve John Archibald Wheeler'dan alan Wheeler-Feynman soğurucu teorisi, elektromanyetik alan denklemlerinin çözümlerinin şu varsayımdan türetilmiş bir elektrodinamiğin yorumudur: alan denklemlerinin kendileri gibi, zaman-ters dönüşüm altında değişmez olmalıdır. Gerçekten de, tercihli bir zaman yönünü öne çıkaran ve böylece geçmiş ile gelecek arasında bir ayrım yapan, zaman-ters simetrisinin kırılması için görünürde bir neden yoktur. Zamanın tersine çevrilmesiyle değişmeyen bir teori daha mantıklı ve zariftir. Bu yorumdan kaynaklanan ve Mach'ın Hugo Tetrode'a bağlı ilkesini hatırlatan bir diğer temel ilke, temel parçacıkların kendi kendine etkileşmediğidir. Bu, öz enerji sorununu hemen ortadan kaldırır.