İçeriğe atla

Lewis sayısı

Akışkanlar dinamiği ve termodinamik alanlarında, Lewis sayısı (Le), termal difüzyon (İng. thermal diffusivity) ile kütle difüzyonunun (İng. mass diffusivity) oranı olarak tanımlanan bir boyutsuz sayıdır. Bu sayı, eşzamanlı ısı ve kütle transferi süreçlerini karakterize etmek için kullanılır. Lewis sayısı, termal sınır tabakasının kalınlığını konsantrasyon sınır tabakası ile ilişkilendirir.[1] Lewis sayısı şu şekilde tanımlanır:[2]

burada:

  • α termal difüzyon katsayısıdır,
  • D kütle difüzyon katsayısıdır,
  • λ ısıl iletkenliktir,
  • ρ yoğunluktur,
  • Dim karışım ortalama difüzyon katsayısıdır,
  • cp sabit basınçta özgül ısı kapasitesidir.

Akışkanlar mekaniği alanında, birçok kaynak Lewis sayısını yukarıdaki tanımın tersi olarak tanımlar.[3][4]

Lewis sayısı, Prandtl sayısı (Pr) ve Schmidt sayısı (Sc) cinsinden de ifade edilebilir:[5]

Lewis sayısı, Warren K. Lewis (1882–1975) adını taşır,[6][7] ki kendisi MIT'de Kimya Mühendisliği Bölümü'nün ilk başkanıydı.

Ayrıca bakınız

Notlar

  1. ^ "Lewis number". tec-science. 10 Mayıs 2020. 25 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Haziran 2020. 
  2. ^ Cohen, E. Richard; Cvitaš, Tomislav; Frey, Jeremy G.; Homström, Bertil; Kuchitsu, Kozo; Marquardt, Roberto; Mills, Ian; Pavese, Franco; Quack, Martin; Stohner, Jürgen; Strauss, Herbert L.; Takami, Michio; Thor, Anders J. (2007). Quantities, Units and Symbols in Physical Chemistry (PDF). 3rd. IUPAC. s. 82. 5 Ocak 2024 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 27 Mayıs 2024. 
  3. ^ Candler, Graham V.; Nompelis, Ioannis (September 2009). "Computational Fluid Dynamics for Atmospheric Entry". Von Karman Institute. Von Karman Institute for Fluid Dynamics Lecture Series Hypersonic Entry and Cruise Vehicles (İngilizce). 11 Kasım 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2024 – Defence Technical Information Centre vasıtasıyla. 
  4. ^ White, Frank M. (1991). Viscous fluid flow. 2nd. New York: McGraw-Hill. ss. 31-34. ISBN 0-07-069712-4. OCLC 21874250. 
  5. ^ Guruge, Amila Ruwan (10 Şubat 2022). "What is the Lewis Number". Chemical and Process Engineering (İngilizce). 20 Aralık 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Aralık 2022. 
  6. ^ Lewis, W. K. (1922). "The Evaporation of a Liquid into a Gas". Transactions of the American Society of Mechanical Engineers. 44 (1849). New York. ss. 325-340. hdl:2027/mdp.39015023119749. 
  7. ^ Klinkenberg, A.; Mooy, H. H. (1948). "Dimensionless Groups in Fluid Friction, Heat, and Material Transfer". Chemical Engineering Progress. 44 (1). ss. 17-36. 

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

Grashof sayısı akışkanlar dinamiği ve ısı transferinde kullanılan boyutsuz bir sayıdır. Sık sık doğal taşınımı içeren konularda ortaya çıkar. Adını Alman mühendis Franz Grashof'tan alır.

dikey düz yüzeyler için
borular için
kaba cisimler için
g = yerçekimi ivmesi
β = genleşme katsayısı
Ts = yüzey sıcaklığı
T = ortam sıcaklığı
L = uzunluk
D = çap
ν = kinematik viskozite

Prandtl sayısı boyutsuz bir sayıdır. Momentum yayınımının termal yayınıma oranıdır. Sayı, Alman fizikçi Ludwig Prandtl'a ithafen adlandırılmıştır.

<span class="mw-page-title-main">Taşınım olayı</span>

Taşınım olayı (veya taşınım fenomeni), mühendislik, fizik ve kimyada gözlemlenen ve üzerine araştırma gerçekleştirilen sistemlerin, kütle, enerji, yük, momentum ve açısal momentum değişimiyle ilgilenen çalışmalardır. Sürekli ortamlar mekaniği ve termodinamik gibi pek çok farklı alandan yararlanırken, ele aldığı konular üzerindeki ortaklıklara önemli düzeyde vurgu yapmaktadır.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

Termodinamik ve akışkanlar mekaniği gibi bilim dallarında kullanım alanı bulan iki çeşit Bejan sayısı (Be) bulunmaktadır. Bu sayılar, Adrian Bejan'ın adını taşımaktadır.

Brinkman sayısı (Br), bir duvardan akan viskoz bir akışkana ısı iletimiyle ilişkili boyutsuz bir büyüklüktür ve genellikle polimer işleme alanında kullanılmaktadır. Bu sayı, Hollandalı matematikçi ve fizikçi Henri Brinkman'a ithafen adlandırılmıştır. Birden fazla tanım bulunmaktadır; bunlardan biri şöyledir:

Euler sayısı (Eu), akışkan akışı hesaplamalarında kullanılan bir boyutsuz sayıdır. Bu sayı, yerel bir basınç düşüşü ile akışın birim hacim başına kinetik enerjisi arasındaki ilişkiyi ifade eder ve akıştaki enerji kayıplarını karakterize etmek için kullanılır. Mükemmel sürtünmesiz bir akış, Euler sayısının 0 olduğu duruma karşılık gelir. Euler sayısının tersi, sembolü Ru olan Ruark Sayısı olarak adlandırılır.

Akışkanlar dinamiğinde, Graetz sayısı (Gz), bir kanaldaki laminer akışı karakterize eden bir boyutsuz sayıdır. Bu sayı şu şekilde tanımlanır:

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

Laplace sayısı (La), diğer adıyla Suratman sayısı (Su), serbest yüzey akışkanlar dinamiği karakterizasyonunda kullanılan bir boyutsuz sayıdır. Bu sayı, yüzey gerilimi ile akışkan içindeki momentum taşınımı arasındaki oranı temsil eder.

Akışkanlar dinamiği alanında, Morton sayısı (Mo), Eötvös sayısı veya Bond sayısı ile birlikte, çevresindeki bir akışkan veya sürekli faz c içinde hareket eden baloncukların veya damlacıkların şeklini belirlemek için kullanılan bir boyutsuz sayıdır. Bu sayı, 1953 yılında W. L. Haberman ile birlikte tanımlayan Rose Morton'dan ismini almıştır.

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

Süreklilik mekaniği alanında, Péclet sayısı, süreklilik içerisindeki taşınım fenomenlerinin araştırılmasıyla ilgili olan bir boyutsuz sayı kategorisidir. Bu sayı, bir fiziksel niceliğin akış ile gerçekleşen adveksiyon hızının, aynı niceliğin uygun bir gradyan tarafından yönlendirilen difüzyon hızına oranı olarak tanımlanır. Tür veya kütle transferi bağlamında, Péclet sayısı Reynolds sayısı ile Schmidt sayısının çarpımına eşittir. Termal akışkanlar bağlamında ise, termal Péclet sayısı, Reynolds sayısı ile Prandtl sayısının çarpımına eşittir.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

Richardson sayısı (Ri), Lewis Fry Richardson (1881–1953) adını taşıyan boyansi teriminin akış kayma gerilmesi terimine oranını ifade eden bir boyutsuz sayı:

Akışkanlar dinamiğinde, bir akışkanın Schmidt sayısı, momentum difüzivitesi ile kütle difüzyonu oranı olarak tanımlanan bir boyutsuz sayıdır ve eşzamanlı momentum ve kütle difüzyonu konveksiyon süreçlerinin gerçekleştiği akışkan akışlarını karakterize etmek amacıyla kullanılır. Bu sayı, Alman mühendis Ernst Heinrich Wilhelm Schmidt (1892–1975) adına ithaf edilmiştir.

Sherwood sayısı (Sh), kütle transferi operasyonlarında kullanılan bir boyutsuz sayıdır. Bu sayı, toplam kütle transfer hızının difüzif kütle taşınım hızına oranını gösterir ve Thomas Kilgore Sherwood'un adına ithafen verilmiştir.

Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.

Türbülanslı Prandtl sayısı (Prt), momentum girdap difüzyonu ile ısı transferi girdap difüzyonu arasındaki oran olarak tanımlanan bir boyutsuz terimdir. Bu sayı, türbülanslı sınır tabaka akışlarındaki ısı transferi problemlerinin çözümünde oldukça önemlidir. Prt için en basit model Reynolds benzeşimi olup, türbülanslı Prandtl sayısını 1 olarak belirler. Deneysel verilere dayanarak, Prt'nin ortalama değeri 0,85 olup, sıvının Prandtl sayısı'na bağlı olarak 0,7 ile 0,9 arasında değişmektedir.