İçeriğe atla

Lene Hau

Lene Vestergard Hau (d. 13 Ekim 1959, Vejle, Danimarka), Danimarkalı fizikçidir. 1999 yılında, süper akışkan kullanımıyla bir ışık demetinin hızını saniyede 17 metreye kadar yavaşlatmayı başarmış ve 2001'de ışık demetini tümüyle durdurmayı başarmış bir Harvard Üniversitesi takımını yönetti. Bu deneyleri temel alan sonraki çalışmaları, kuantum şifrelemesi ve kuantum işlemciliği için önemli etkileri olan bir sürece, ışığın maddeye ardından da maddenin geri ışığa dönüşmesi çalışmalarına sürükledi. Daha yeni çalışmaları aşırı soğuk atomlar ve nanoskopik ölçekteki sistemlerin alışılmamış etkileşimleriyle ilgili araştırmalar içerir. Fizik ve uygulamalı fizik öğretmesi dışında, Harvard'da, fotovoltaik hücreler, nükleer enerji, piller ve fotosentezi içeren Enerji Bilimi dersi verdi. Kendi deney ve araştırmalarının yanı sıra, sık sık Uluslararası konferanslarda konuşma yapması istenmektedir ve bir sürü kurumun bilim politikalarının oluşturulması sürecine dâhil olmaktadır. Danimarka'da önde gelen bilim politikaları ve araştırma geliştiricilerinin yanı sıra devlet bakanlarının da katıldığı, Kopenhag’da 7 Şubat 2013’te düzenlenen EliteForsk-konferencen 2013 (Elit Araştırma Konferansı)’te Keynote Konuşmacı olarak bulundu.

Akademik kariyeri

1984 yılında Matematik bölümünden mezun olduktan sonra, Hau University of Aarhus Üniversitesi’nde iki yıl içinde aldığı Fizik Master’ı için çalışmaya devam etti. Kuantum teorisi üzerine olan doktora çalışmaları için Hau, ışık taşıyan fiber optik kablolarına benzer fikirler üzerine çalıştı ama onun çalışmaları silikon kristaller içindeki elektron taşıyan atom iplikleri üzerineydi. Doktorası üstüne çalışırken, Hau 7 ayını Cenevre yakınlarındaki Cern’de, Avrupa Parçacık Fiziği Laboratuvarı’nda geçirdi. 1991 yılında Danimarka’daki Aarhus Üniversitesi’nde doktorasını tamamladı ama tam bu zamanda araştırma ilgileri yön değiştirdi. 1991 yılında, yavaş ışığın ve soğuk atomların olasılıklarını keşfetmeye başlayarak Cambridge’teki Rowling Bilim Enstitüsü’ne bilimsel üye olarak katıldı. 1999 yılında, Hau Harvard Üniversitesi’nde iki yıllık bir doktora sonrası işini kabul eti. Eğitimi kuramsal fizik üstüneydi ama ilgisi, Bose-Einstein yoğunlaşması olarak bilinen maddenin yeni bir formunu oluşturmayı içeren deneysel fiziğe yöneldi. “Hau, yoğuşuğunu oluşturmak için Ulusal Bilim Kurumu’na fon başvurusunda bulundu, ama bu deneyleri yapması çok zor olacak olan bir kuramsalcı olduğu temeline dayanılarak bu istek reddedildi.” Azimle, alternatif bir fon kazandı ve böyle bir yoğuşuğu yapan ve bir elin parmaklarının sayısını geçmeyen fizikçilerin ilki oldu. 1999 Eylül'ünde Harvard fizik profesörlüğüne ve Gordon Mckay uygulamalı fizik profesörlüğüne atandı. Aynı zamanda 1999 yılında kadrolu eğitim görevliğiyle ödüllendirildi ve halen Harvard'da Mallickrodt fizik ve uygulamalı fizik profesörüdür. 2001 yılında, ışığı Bose-Einstein yoğunlaştırıcısıyla durduran ilk kişi olmuştur. O zamandan beri, elektromanyetikle indüklenmiş şeffaflık, kuantum fiziğinin bir sürü alanı ve fotonikle ilgili bir sürü araştırma ve yeni bir deneysel çalışma üretmiştir ve yeni kuantum cihazlarının ve alışılmamış nano ölçekli uygulamaların gelişmesine katkıda bulunmuştur.

Qubit Transferi

Hau ve Harvard'daki iş arkadaşları “ışık ve madde üzerindeki hassas kontrolleri bir sürü deneyle göstermiştir ama Hau’nun iki yoğuşuklu olan deneyi en zorlayıcı olandır”. 2006 yılında, yine Bose-Einstin yoğunlaştırıcısını kullanarak bir qubit'i ışıktan madde dalgasına ve ardından yine ışığa transfer etmişlerdir. 8 Şubat 2007 tarihli Nature dergisinde deneyin detayları tartışılmıştır. Deney, kuantum mekaniğine göre atomların parçacık gibi olduğu kadar dalga gibi de davranabilmesine dayanmaktadır. Bu atomların iki girişten bir seferde geçmeleri gibi bazı mantık dışı şeyler yapmasına izin verir. Bir Bose-Einstein yoğunlaştırıcısının içinde, bir ışık demeti, içinde bulundurduğu bilginin hiçbirini kaybetmeden 50 milyonu oranla sıkıştırılır. Bu Bose-Einstein yoğunlaştırıcısında, ışık demetine işlenmiş bilgi atom dalgalarına aktarılabilir. Tüm atomlar tutarlı hareket ettiğinden, bilgi rastgele bir sese çözünmez. Işık, bazı bulutların kabaca 1,8 milyon sodyum atomunun sabit kalan düşük enerjili bir parça ve yüksek enerjili bulutlar arasında hareket eden bir parça ile kuantum üst üste gerilime girmesini sağlar. İkinci bir kontrol lazeri demetin şeklini atom dalgalarına yazar. Bu kontrol demeti kapatıldığında ve ışık demeti kaybolduğunda madde kopyası geriye kalır. Bundan öncesinde, araştırmacılar optik bilgiyi yolculuğu süresince, yok olmasını engellemek için sinyali güçlendirmek dışında kontrol edememişlerdir. Hau ve iş arkadaşları ilk tutarlı optik bilginin yönlendirilmesini başarmışlardır. Bu yeni çalışma “güzel bir gösterimdir” demiştir Williamsburg, VA'de bulunan William ve Mary Üniversitesi'nde fizikçi Irina Novikova. Bu sonuçtan önce, ışık bellekleri milisaniyelerle ölçülürdü demiştir. “Bakınız kesirli saniyeler. Bu gerçekten dramatik bir zaman”. Potansiyelinden ötürü, Hau “Madde iki Bose-Einstein yoğuşuğu arasında gidip gelirken, onu yakalayıp, potansiyel olarak dakikalar boyunca tutabilir ve ona istediğimiz yönde şekil verebilir, onu değiştirebiliriz. Bu kuantum kontrolünün alışılmadık formunun kuantum bilgi işlemciliğinin ve kuantum şifrelemesinin gelişen alanlarında da uygulamaları olabilir. Sanat ve Bilim Fakültesi dekanı Jeremy Bloxham geliştirici uygulamaları için “Bu başarı, kuantum bilgisinin ışık formundan sadece bir değil, iki atom formu etrafında paylaşımı, kuantum bilgisayarı geliştirmeyi umanlar için harika bir teşvik olmaktadır.”  Hau bu çalışması için George Ledlie Ödülü'ne layık görülmüştür. Harvard rektörü Steve Hyman “Onun çalışması çığır açan bir çalışmadır. Araştırması temel ve uygulamalı bilim arasındaki sınırı kaldırmış aynı zamanda yetenekleri ve iki okuldan, birkaç farklı bölümden insanları kendine çekmiş, gözüpek entelektüel riskler almanın büyük ödüller getireceğinin coşkulu bir örneğidir." demiştir.

Soğuk atomlar ve nanoölçek sistemleri

Yakalanan bir atom, elektronu nanotüp içine çekilirken parçalanır

2009 yılında Hau ve ekibi bir milyon rubidyum atomundan oluşan bulutları lazer aracılığıyla mutlak sıfırın biraz üzerinde bir dereceye kadar soğutmuşlar. Sonra bu milimetre uzunluğundaki atomik bulutu, iki santimetre uzaklıktaki yüzlerce voltla yüklü olan asılı karbon nanoboruya doğru fırlattılar. Sonuçlar soğuk atomlar ve nano ölçekli sistemler arasında yeni etkileşimleri müjdeleyerek 2010 yılında yayımlandı. Çoğu atomun geçtiğini ancak milyonda 10'unun kaçamayacak şekilde çekildiğini ve dramatik bir şekilde ivmelendiğini gözlemlediler. “Bu noktada hızlanan atomlar bir nona kablo etrafında paralel bir şekilde dönerek her bir yörüngeyi sadece saniyenin trilyonda birinde tamamlayarak bir elektron ve iyona ayrıldı. Elektron eninde sonunda kuantum tüneli yoluyla bu nano tüpe sıkıştı ve yanındaki elektronun-300volt nanotüp tarafından kuvvetlice çekilen-saatte 26 kilometre hızla itilmesine sebep oldu.” Bu deneyde atomlar kolaylıkla birbirleriyle çarpışmadan hızlıca parçalara ayrılabildiler. Ekip bu etkinin, uzayda var olan kara deliklerde de hesaplandığı gibi, yerçekimi nedeniyle olmadığını, nano tüpün içerisindeki yüksek elektrik yükler nedeniyle kaynaklandığını da açıkladı. Bu deney yeni bir yüksek çözünürlük tipini şematize etmek amacıyla nanoteknoloji ve soğuk atomları birleştiren bir deneydir. Bilim insanları aynı zamanda temel çalışmaların da bu deney düzeneği sayesinde mümkün kılınabileceğini öngörüyor.

Kaynakça

İlgili Araştırma Makaleleri

Fizik, maddeyi, maddenin uzay-zaman içinde hareketini, enerji ve kuvvetleri inceleyen doğa bilimi. Fizik, Temel Bilimler'den biridir. Temel amacı evrenin işleyişini araştırmaktır. Fizik en eski bilim dallarından biridir. 16. yüzyıldan bu yana kendi sınırlarını çizmiş modern bir bilim olmasına karşın, Bilimsel Devrim'den önce iki bin sene boyunca felsefe, kimya, matematik ve biyolojinin belirli alt dalları ile eş anlamlı olarak kullanılmıştır. Buna karşın, matematiksel fizik ve kuantum kimyası gibi alanlardan dolayı fiziğin sınırlarını net olarak belirlemek güçtür.

<span class="mw-page-title-main">Albert Einstein</span> Almanya doğumlu fizikçi (1879–1955)

Albert Einstein, Almanya doğumlu teorik fizikçi ve bilim insanı. Tüm zamanların en iyi fizikçilerinden birisi olarak kabul edilen Albert Einstein, en çok görelilik teorisini geliştirmesiyle tanınır. Aynı zamanda kuantum mekaniğinin gelişimine önemli ölçüde katkılarda bulunmuştur. Kendisi tarafından bulunan ve bilim dünyasında yeni bir çığır açan kütle-enerji denkliği formülü E = mc2 dünyanın en ünlü denklemi olarak adlandırılmıştır. Fizik ve matematik alanına sağladığı katkılardan dolayı ve fotoelektrik etki yasasının keşfi sebebiyle 1921 yılında Nobel Fizik Ödülü'ne layık görüldü. 1999 yılında Time dergisi tarafından yüzyılın en önemli kişisi seçilmiştir.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

Antimadde, karşı madde veya karşıt madde, maddenin ters ikizi. Paul Dirac denklemiyle ortaya çıkarılmış ve daha sonraki gözlemlerle de varlığı doğrulanmıştır. Antimadde en basit hâliyle normal maddenin zıddıdır. Antimaddenin atomaltı parçacıkları, normal maddeye göre zıt özellikler taşımaktadır. Bu atomaltı parçacıkların elektrik yükleri, normal maddenin atomaltı parçacıklarının tam tersidir. Antimadde, Büyük Patlama'dan sonra normal maddeyle birlikte oluşmuştur; fakat sebebinin ne olduğunu bilim insanları tam anlamıyla bilemeseler de evrende oldukça nadir bulunmaktadır.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">William Phillips</span> Amerikalı fizikçi

William Daniel Phillips "atomları lazer ışığıyla soğutma ve hapsetme yöntemlerini geliştirdikleri için" Claude Cohen-Tannoudji ve Steven Chu ile birlikte 1997 Nobel Fizik Ödülü'nü kazanan fizikçidir.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.

Atom fiziği, atomu bir bütün olarak atomların etkileşimlerini, atomun ve moleküllerin yapısı, enerji düzeyleri, dalga fonksiyonlari ve elektromanyetik geçişleri, atomlar arası bağlar, moleküler yapılar, atom modeli, atomik spektroskopide ince yapı ve aşırı ince yapı, spektroskopik gösterim ve enerji seviyeleri, geçiş olasılığı ve seçim kuralları, Zeeman olayı, Stark olayı, moleküler spektrum, iyonik bağlar, dönme, titreşim ve elektronik geçiş spektrumu, lazer gibi bölümleri- inceleyen fiziğin alt dallarından ikincisidir.

<span class="mw-page-title-main">Satyendra Nath Bose</span> Hint matematikçi ve fizikçi (1894–1974)

Satyendra Nath Bose, Royal Society üyesi Hint matematikçi ve fizikçi.

<span class="mw-page-title-main">Roy Glauber</span> Amerikalı teorik fizikçi (1925 – 2018)

Roy Jay Glauber, Amerikalı kuramsal fizikçi. Kendisi Harvard Üniversitesi'nde fizik profesörü ve Arizona Üniversitesi optik bilimleri öğretim görevlisi olarak çalışmıştır. Fizik dalında 2005 Nobel Ödülü kazanmış bu ödülü John L. Hall ve Theodor W. Hansch ile birlikte paylaşmıştır.

<span class="mw-page-title-main">Eric Cornell</span> Amerikalı fizikçi

Eric Allin Cornell Carl E. Wieman ile Bose-Einstein yoğunlaşması üzerine yaptıkları buluş nedeniyle 2001 Nobel Fizik Ödülü kazanmış Amerikan fizikçidir.

Modern fizik, klasik fizik ile tanımlanamayan olayları açıklamak üzere ortaya atılmış teorilerin tümüdür. Einstein'ın özel görelilik kuramından, Max Planck'ın kara cisim ışıması kuramına; Schrödinger'in kedisinden, kuark ve bozonlara kadar her şey modern fizik adı altında buluşur.

<span class="mw-page-title-main">Süperakışkanlık</span>

Süperakışkanlık maddenin sıfır akmazlığa sahip bir akışkan gibi davrandığı hâlidir. Bu fenomen ilk olarak sıvı helyum ile keşfedildiyse de yalnızca sıvı helyum teorisinde değil aynı zamanda astrofizik, yüksek enerji fiziği ve kuantum kütleçekimi teorilerinde de uygulama alanına girmiştir. Bu fenomen Bose-Einstein yoğunlaşması ile bağıntılıdır ancak özdeş değildir: Bütün Bose-Einstein yoğuşukları süperakışkan olmadığı gibi bütün süperakışkanlar da Bose-Einstein yoğuşuğu değildir.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Kuantum mekaniğinin tarihi modern fizik tarihinin önemli bir parçasıdır. Kuantum kimyası tarihi ile iç içe olan kuantum mekaniği tarihi özünde birkaç farklı bilimsel keşif ile başlar; 1838’de Michael Faraday tarafından elektron demetlerinin keşfi, Gustav Kirchhoff tarafından 1859-60 kışı siyah cisim ışıması problemi beyanı, Ludwig Boltzmann’ın 1877 yılındaki fiziksel bir sistemin enerji seviyelerinin ayrıklardan olabileceği önerisi, 1887 yılında Heinrich Hertz’in fotoelektrik etkiyi keşfetmesi ve Max Planck’ın 1900 yılında ileri sürdüğü, herhangi bir enerji yayan atomik sisteminin teorik olarak birkaç farklı “enerji elementi” ε (epsilon) ne bölünebilmesi, bu enerji elementlerinden her birinin frekansına ν orantılı olması ve ayrı ayrı enerji üretebilmesi hipotezi, aşağıdaki formülle gösterilmiştir;

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

<span class="mw-page-title-main">Danimarka kültürü</span>

Danimarka kültürü zengin bir entelektüel ve sanatsal mirasa sahiptir. Tycho Brahe'nin (1546–1601) astronomik keşifleri, Ludwig A. Colding'in (1815–1888) enerjinin korunumu yasası üzerinde yaptığı göz ardı edilen katkıları, Niels Bohr'un (1885–1962) atom fiziğine yaptığı katkılar, Lene Vestergaard Hau'nun kuantum fiziğiyle ilgili ışık demetinin durdurulması, nano-teknolojideki ilerlemeler, Bose-Einstein yoğunlaşmasının kavranması gibi katkıları Danimarka'nın bilimsel başarılarının büyüklüğünü ve devamlılığını gösteriyor. Hans Christian Andersen'in (1805–1875) peri masalları, Søren Kierkegaard'ın (1813–1855) felsefe alanında denemeleri, Karen Blixen'in kısa hikâyeleri, Ludvig Holberg'in (1684–1754) piyesleri, Herman Bang ve Nobel ödüllü Henrik Pontoppidan gibi modern yazarlar ve Piet Hein'in (1905–1996) yoğun hicivli şiirleri, Carl Nielsen'in (1865–1931) senfonileri, uluslararası takdir kazanmıştır. 1990'ların ortalarından beri özellikle Dogma 95 ile ilgili olan Danimarka filmleri uluslararası alanda dikkat çekmiştir. Danimarka kuvvetli bir film yapım geleneğine sahiptir ve Carl Theodor Dreyer dünya çapında gelmiş geçmiş en iyi film yönetmenlerinden biri sayılmaktadır.

<span class="mw-page-title-main">Jean Dalibard</span> Fransız fizikçi (d. 1958)

Jean Dalibard, kuantum mekaniği alanında çalışmalar yürüten Fransız fizikçidir. École Polytechnique'de profesör ünvanıyla görev yapmaktadır. École Normale Supérieure'de araştırma görevlisi olmakla birlikte, Fransız Bilimler Akademisi üyesi ve Collège de France'da profesör olarak çalışmalar yapmaktadır.