İçeriğe atla

Legendre sabiti

Legendre sabiti, asal sayılar teoremi keşfedilmeden önce, bir yanılgı neticesinde kabul edilmiş bir matematiksel sabittir.

Adrien-Marie Legendre kendi zamanında bilinen asal sayılardan yola çıkarak bulduğu asal sayı sayma fonksiyonunu şu şekilde formülize etmişti:

Asal sayı sayma fonksiyonu, n bir gerçel sayı olmak üzere, n'den küçük ya da n'ye eşit olan asal sayıların kaç tane olduğu sonucunu veren fonksiyondur. Dolayısı ile n sonsuza giderken yukarıdaki denklemin sonucu toplam kaç tane asal sayı olduğunu verecektir.

Denklemdeki A(n) ifadesi, n sonsuza giderken, Legendre'nin ispatına göre yaklaşık olarak, 1,08366 değerine yakınsıyordu ki bu değer matematikte Legendre sabiti olarak anılır. Daha sonra Johann Carl Friedrich Gauss bu limitin daha düşük olması gerektiği sonucuna vardı. Şu anda biliniyor ki bu değer 1'e eşittir, yani Legendre sabiti bir yanılsamadan ibarettir.

Dış bağlantılar

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">İkiz asallar</span>

İkiz asallar, aralarındaki fark 2 olan asal sayılar. Örneğin 3-5, 5-7, 11-13 ikiz asallardır. 2-3 çifti hariç iki asal sayı arasındaki fark da zaten en az 2 olabilir.

<span class="mw-page-title-main">Taylor serisi</span>

Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise, Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz. Yaklaşık değeri şöyledir:

<span class="mw-page-title-main">Üstel fonksiyon</span>

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.
<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

<span class="mw-page-title-main">Sonsuz</span> matematik ve fizikte herhangi bir sonu olmayan şeyler ve sayılar

Sonsuz, eski Yunanca Lemniscate kelimesinden gelmektedir, çoğunlukla matematik ve fizikte herhangi bir sonu olmayan şeyleri ve sayıları tarif etmekte kullanılan soyut bir kavramdır.

Karmaşık analizde, tam fonksiyon veya başka bir deyişle integral fonksiyonu, karmaşık düzlemin tümünde holomorf olan karmaşık değerli bir fonksiyondur. Tam fonksiyonların tipik örnekleri polinomlar, üstel fonksiyon ve bunların toplamları, çarpımları ve bileşkeleridir. Her tam fonksiyon tıkız kümeler üzerinde düzgün bir şekilde yakınsayan kuvvet serileri ile temsil edilebilir. Doğal logaritma ya da karekök fonksiyonu tam bir fonksiyona uzatılamaz.

<span class="mw-page-title-main">Mutlak sıcaklık</span> mutlak sıcaklık ölçüsü

büyüklüğünün veya mutlak sıcaklık ya da termodinamik sıcaklık olarak tanımlanan büyüklüğünün iki önemli fiziksel sonucu vardır.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

Sayı kuramında yarı asal sayılar, iki tane asal sayının çarpımı şeklinde yazılabilen pozitif tam sayılardır. Dolayısıyla ya bir asal sayının karesidirler ya da dört tane farklı pozitif bölene sahiptirler. Buna bağlı olarak, dört tane pozitif bölene sahip her sayı yarı asal olmak zorunda değildir. Bir asal sayının karesi olmayan asal sayılara ayrık asal sayılar denir. Bir yarı asal sayı n için Ω(n) tanım gereği ikiye eşittir. Yarı asallar RSA gibi kriptografi sistemlerinde kullanılır.

<span class="mw-page-title-main">Termodinamiğin üçüncü kanunu</span>

Termodinamik'in üçüncü yasası bazen ‘mutlak sıfır sıcaklığında dengede olan sistemlerin özelliklerine ilişkin’ olarak şu şekilde tanımlanır:

Eğlence matematiğinde Harshad sayı rakamları toplamına tam bölünebilen tam sayılara denir. Harshad özelliğini sağlayan sayma tabanına n dersek sayılar n-Harshad veya n-Niven olarak da söylenirler. Hindistanlı matematikçi D. R. Kaprekar tarafından tanımlanmışlardır. "Harshad" kelimesi Sanskritçe harṣa (eğlence) + + da (vermek), kelimelerinin bileşiminden "eğlenceli" anlamındadır. Niven sayı tabiri ise Ivan M. Niven tarafından 1977'de sayma teorisi ile ilgili yayınlanmış olan makaleye dayandırılmıştır.

<span class="mw-page-title-main">Primoriyel</span>

Primoriyel, matematikte ve bilhassa sayı teorisinde doğal sayılardan doğal sayılara tanımlanmış faktöriyele benzer şekilde art arda pozitif tam sayıları çarpacağı yerde sadece asal sayıları çarpar.

Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.

<span class="mw-page-title-main">Asal sayı teoremi</span> sayılar teorisinde bir teorem

Asal sayı teoremi (PNT), asal sayıların pozitif tam sayılar arasındaki asimptotik dağılımını tanımlar. Bunun meydana gelme hızını tam olarak ölçerek, asal sayıların büyüdükçe daha az yaygın hale geldiği şeklindeki sezgisel fikri resmîleştirir. Teorem, 1896'da Jacques Hadamard ve Charles Jean de la Vallée Poussin tarafından bağımsız olarak Bernhard Riemann'ın ortaya attığı fikirler kullanılarak kanıtlandı.

Bu bir sayılar teorisi zaman çizelgesidir.