İçeriğe atla

Lazer soğutma

Lazer soğutma; atomik ve moleküler örneklerin bir veya daha fazla lazer alan ile etkileşimi ile mutlak sıfıra yakın derecede soğutulduğu birçok tekniği ifade etmektedir.

Simplified principle of Doppler laser cooling:
1 Sabit bir atom lazeri ne kırmızı ne mavi görür ve fotonu almaz.
2 Lazerden uzaklaşan bir atom lazerin kırmızıya dönüştüğünü görür ve fotonu almaz.
3.1 Lazerde doğru hareket eden bir atom lazerin maviye dönüştüğünü görür ve yavaşlayarak fotonu alır.
3.2 Foton elektronu daha yüksek bir kuantum durumuna hareket ettirerek atomu uyarır.
3.3 Atom fotonu tekrar yansıtır. Yön rastgele olduğu için birçok atom üzerindeki momentumda net bir değişim yoktur.

Lazer soğutmanın ilk örneği ve ayrıca hala en yaygın yöntem (öyle ki hala çoğunlukla basitçe ‘lazer soğutma’ olarak bahsedilir) Doppler soğutmadır. Lazer soğutmanın diğer yöntemleri şunlardır:

  • Sisyphus (Sisifus) soğutma
  • Çözülmüş yan bant soğutma
  • Hız seçici bağdaşık yoğunluk hapsetme (VSCPT)
  • Anti stokes esnemez ışık saçılması (genellikle fluoresans ya da Raman saçılımı formunda)
  • Boşluk aracılı soğutma
  • Ortak soğutma
  • Zeeman yavaşlatıcı kullanımı

Nasıl Çalışır

Bir lazer fotonu atoma çarpar ve atomun lazerden aldığından daha fazla ortalama enerjisi olan fotonlar yaymasına sebep olur. Enerji farklılığı, atomlar arası termal uyarılmalardan kaynaklanmaktadır. Ve termal uyarılmalardan oluşan bu ısı ışığa dönüştürülür ki bu da atomu foton olarak bırakır. Buna ayrıca momentumun korunumu yasası açısından da bakılabilir. Bir atom bir lazer ışınına doğru giderken ve lazerden bir foton atom tarafından alınırken, atomun momentumu atomun aldığı fotonun momentumunun miktarı kadar azalır.

Δp/p = pphoton/mv = Δv/v
Δv = pphoton/m

Fotonun momentumu: p = E/c = h/λ
Bir hovercraft üzerinde uçtuğunuzu düşünün. Bir yönde belirli bir hızda hareket ediyorsunuz (örneğin; kuzeye doğru). Size doğru dört bir yandan (sağ, sol, ön, arka) ağır metalik toplar atılıyor. Ama siz sadece direkt olarak önünüzden gelen topları yakalayabiliyorsunuz. Eğer bu topların birini yakalayacak olsaydınız momentumun korunumu yasası sebebiyle yavaşlardınız. Sonuçta, bununla beraber, topu atmak zorundasınız, ama topu attığınız yön tamamen rastgele olacak. Momentumun korunumu sebebiyle, topu atmak topun tersi yönünde hızınızı arttıracak. Bununla beraber, “atılma” yönü rastgele olduğu için hızınıza olan bu katkı ortalama olarak yok olacak. Bu yüzden ileri doğru hızınız azalacak (tercihen topları önde yakalama sebebiyle) ve sonunda hareketleriniz tamamen topları yakalama ve atmanın geri tepme kuvveti tarafından belirlenecektir.[1][2]

ηsoğutma = Psoğutma/Pelektrik

ηsoğutma = soğutma verimliliği

Psoğutma = aktif maddenin soğutma gücü

Pelektrik = pompa ışık kaynağına giren elektrik gücü

h/λ = p = mv

h = Planck değişmezi (h = 6.626∙〖10〗(-34) J∙s)

λ = de Broglie dalgaboyu

p = atomun momentumu

m = atomun kütlesi

v = atomun hızı

Örnek: λ = h/mv = λfoton/x

x = v hızındaki m kütleli bir atomun momentumunu durdurmak için gerekli fotonların sayısı

Na Atomu

mNa = 3.818∙〖10〗(-26) kg/atom

vNa ≈ 300metre/saniye

λfoton = 600 nm

λfoton/x = h/(mNa vNa) ⟹ x = 10372

Sonuç: Yaklaşık 300 m/s hızındaki bir sodyum atomunun momentumunu durdurmak için totalde 10372 foton gereklidir. Lazer soğutma deneyleri, bir lazerden saniyede 10^7 foton yayıldığını açığa vurmuştur. Bu sodyum atomu uzayda 1 milisaniyede durdurulabilir.

Doppler Soğutma

Lazer soğutmada hıza bağlı kuvvet

Genellikle manyetik hapsetme kuvvetinin eşlik ettiği Doppler soğutma yöntemi, şimdiye kadarki en yaygın lazer soğutma yöntemidir. Bu yöntem düşük yoğunluktaki gazları Doppler soğutma limitine soğutmak için kullanılır. Bu limit Rubidyum 85 için yaklaşık 150 mikrokelvindir. Doppler soğutma çok özel bir enerji düzeyi yapısı gerektirdiği için metot küçük bir miktar elemente sınırlıdır.

Doppler soğutmada, ışığın sıklığı atomdaki bir elektron geçişinin biraz altında ayarlanır. Işığın ayarı geçişin “kırmızı” (yani daha düşük sıklıkta) sına dönüşür. Böylece atomlar, Doppler etkisi sebebiyle, ışık kaynağına doğru hareket ederse daha çok foton alırlar. Böylece, eğer iki zıt yönden ışık uygulanırsa atomlar her zaman hareket yönlerinin tersini gösteren lazer ışınından daha fazla foton saçacaklardır. Her bir saçılım olayında atom fotonun momentumuna eşit bir momentum kaybeder. Eğer uyarılmış durumdaki atom aynı zamanda bir foton alırsa aynı miktarda momentum ile ters tepilecektir, ama bu rastgele bir yönde olacaktır. Baştaki momentum kaybı hareket yönünün tersinde olduğu için, takip eden momentum kazanımı rastgele yönde iken, emme ve yayılım sürecinin genel sonucu atomun hızını azaltmasıdır (ilk hızının saçılan tek bir fotondan gelen geri tepme hızından daha fazla olması şartı ile). Eğer emme ve yayılım süreçleri birçok kez tekrarlanırsa, ortalama hız ve dolayısıyla atomun kinetik enerjisi azalacaktır. Çünkü bir grup atomun sıcaklığı, ortalama rastlantısal iç kinetik enerji ölçeğidir. Bu, atomları soğutmaya eşdeğerdir.

Diğer Lazer Soğutma Yöntemleri

Protonların bir maddeden ısıyı uzaklaştırmak için kullanıldığı ve bu şekilde maddenin soğutulduğu birtakım benzer süreçler lazer soğutma olarak ifade edilir. Olay, anti skokes fluoerans aracılığıyla gösterilmiştir. Ayrıca aynı etkiyi yaratmak için hem elektrik ışıklı üst-dönüşme hem de foto-ışıklı üst-dönüşme üzerine çalışmalar yapılmıştır. Bunların birçoğunda, ışığın bağdaşımı süreç için gerekli değildir. Ancak, daha fazla ışık saçılımını sağlamak için genellikle lazerler kullanılır.

Kullanımları

Lazer soğutma öncelikle mutlak sıfır (0K, −273.15 °C, −459.67 °F) a yakın sıcaklıklara ulaşmak için Kuantum Fizik deneylerinde kullanılır. Bu, sadece bu ısı seviyesinde oluşabilecek kendine has kuantum etkilerini gözlemlemek için yapılır. Lazer soğutma genellikle elementleri soğutmak için sadece atomik düzeyde kullanılmıştır, ancak daha büyük ölçeklerde ilerleme olmaktadır. 2007'de bir MIT ekibi lazer soğutma ile bir makroölçek (1 gram) nesneyi 0.8 K'ye soğutmayı başarmıştır. 2011'de Kaliforniya Teknoloji Enstitüsünden ve Viyana Üniversitesinden bir ekip, lazer soğutma ile nano-ölçek (10 μm x 1 μm) mekanik bir nesneyi kuantum temel durumuna ilk kez soğutan ekip olmuştur.

Ayrıca bakınız

Kaynakça

  1. ^ Foot, Christopher (2005). Atomic Physics. Oxford University Press. ss. 178-180. ISBN 0 19 850695 3. 
  2. ^ Anissimov, Michael, and Bronwyn Harris. What Is Laser Cooling?. WiseGeek. Retrieved April 11, 2013, from http://www.wisegeek.com/what-is-laser-cooling.htm 30 Eylül 2014 tarihinde Wayback Machine sitesinde arşivlendi.

Dış bağlantılar

  • Bowley, Roger; Copeland, Ed (2010). "Laser Cooling". Sixty Symbols. Brady Haran for the University of Nottingham. 7 Şubat 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Haziran 2014. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Foton</span>

Foton, Modern Fizik'te ışık, radyo dalgaları gibi elektromanyetik radyasyonu içeren Elektromanyetik Alan kuantumu yani ışığın temel birimidir. Ayrıca, Elektromanyetik Kuvvet'lerde kuvvet taşıyan, kütlesiz temel parçacıktır. Parçacık terimi; genelde kütlesi olan veya ne kadar küçük olursa olsun bir cismi var olan anlamıyla kullanılır. Ancak, fotonlar için kullanılırken "en küçük enerji yumağı"nı temsil eden bir birimi ifade eder. Fotonlar Bozon sınıfına aittir. Kütlesiz oldukları için boşluktaki hızı 299.792.458 m/s dir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Lazer</span> ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenek

Lazer ışığın uyarılmış radyasyon ile yükseltilmesini sağlayan bir optik düzenektir. İsmini "Light Amplification by Stimulated Emission of Radiation" kelimelerinin baş harflerinden alır ve bu, "ışığın uyarılmış ışıma ile yükseltilmesi" anlamına gelir. İlk lazer, 1960 yılında Theodore Maiman tarafından Charles Townes ve Arthur L. Schawlow'un teorileri baz alınarak üretilmiştir. Lazerin ışıktan daha düşük mikrodalgafrekanslarında çalışan versiyonu olan "maser" ise Townes tarafından 1953 yılında bulunmuştur.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Bohr modeli</span> bir atom modeli

Bohr atom modeli, Niels Henrik Bohr tarafından 1913 yılında, Rutherford atom modelinden yararlanılarak öne sürülmüştür.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

Elektronvolt (eV) değeri yaklaşık 1.6 x 10−19 J olan enerjiye verilen addır. Tanım olarak bir elektronun, boşlukta, bir voltluk elektrostatik potansiyel farkı katederek kazandığı kinetik enerji miktarıdır. Diğer bir deyişle, 1 volt çarpı elektronun yüküne eşittir. 1 volt temel yük ile çarpıldığında buna eşit olmaktadır.

<span class="mw-page-title-main">Manyeto optik tuzak</span>

Manyeto optik tuzak, soğuk, kapana kısılmış nötr örnekleri üretebilmek için lazer soğutma ve uzamsal olarak değişen bir manyetik alan kullanan bir cihazdır. Bir MOT'tan elde edilen sıcaklıklar, foton geri tepme sınırının iki veya üç katı olan atomik türe bağlı olarak birkaç mikrokelvin kadar düşük olabilir. Bununla birlikte, çözülmemiş aşırı ince yapıya sahip atomlar için, örneğin;bir MOT'nta elde edilen sıcaklık Doppler soğutimitinden den daha yüksek olacaktır.

Stern-Gerlach deneyi Alman fizikçi Otto Stern ve Walther Gerlach tarafından isimlendirilen taneciklerin sapmasının kuantum mekaniği alanında önemli bir deneydir. 1922 yılında Otto Stern ve Walther Gerlach tarafından gerçekleştirilen bu deney, genellikle parçacıkların saçınımını kullanarak kuantum mekaniğinin temel noktalarını açığa çıkarması açısından önemlidir. Bu deney elektronların ve atomların özünde kuantum özelliklerine sahip olduğunu ve ölçülürken kuantum mekaniğinin sistemi nasıl etkilediğini ispat etmek için yapılmaktadır.

Planck momentumu, Planck birimleri olarak bilinen doğal birimler sisteminde momentum birimidir. Aslında Planck momentumuna ait özel sembol yoktur. Fakat ile gösterilir. , Planck kütlesi ve , bir vakumdaki ışık hızıdır.

Bu Lazer konularının bir listesidir.

Mossbauer etkisi uyarılmış bir atom çekirdeğinden gama ışınlarının yayınımı (emition) ve soğrulması (absorption) ile ilgilidir.

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.

<span class="mw-page-title-main">Durgun kütle</span>

Değişmez kütle, durgun kütle, gerçek kütle, tam kütle ya da sınır sistemleri durumunda basitce kütle, bir objenin veya Lorentz dönüşümlerine göre tüm referans çerçevelerinde aynı olan objelerin sisteminin toplam enerji ve momentum karakteridir. Eğer momentum çerçevesinin bir merkezi sistemde oluşuyorsa, sistemin değişmez kütlesi toplam enerjinin ışık hızının karesine bölümüyle bulunur. Diğer referans çerçevelerinde, sistemin enerjisi artar yalnız sistemin momentumu bundan çıkarılmıştır, yani değişmez kütle aynı kalır.

<span class="mw-page-title-main">Elektron-pozitron annihilasyonu</span>

Elektron-pozitron anhilasyonu, bir elektron ve bir pozitron çarpıştığı zaman oluşur. Düşük enerjilerde, çarpışmanın sonucu elektron ve pozitronun anhilasyonu (imhası) ve gama ışını fotonlarının oluşmasıdır:


e-
 + 
e+
→ 
γ

γ

Çarpışma iki ya da daha fazla cismin birbirlerine kısa bir süreliğine uyguladıkları kuvvet olayına denir. Çarpışma kelimesinin en yaygın kullanımı iki ya da daha fazla cismin birbirleriyle çarpışması anlamına gelmesine rağmen, kelimenin bilimsel olarak kullanımına baktığımızda çarpışma aslında kuvvetlerin büyüklükleri hakkında hiçbir şey ima etmez.