İçeriğe atla

Laktik asit fermantasyonu

Laktik asit

Laktik asit fermantasyonu, oksijen yetersizliğinde bazı bakteri ve hayvan hücrelerinde görülen bir fermantasyon biçimidir.

Normalde, glikoz glikoliz yoluyla parçalanır, iki molekül ATP, iki molekül NADH ve iki molekül pirüvat elde edilir. Ancak, NADH moleküllerinde bulunan hidrojen atomunun başka bir moleküle aktarılarak NAD+'nın tekrar oluşturulması gerekir ki yeni glikoz molekülleri parçalanmaya devam edebilsin.

Ortamda yeterli oksijen olduğu zaman NADH molekülünde bulunan hidrojen bir takım ara moleküller aracılığıyla sonunda oksijene aktarılır ve glikolizin ilk aşamalarında ortaya çıkan bir hidrojen iyonu da kullanılarak bir molekül su meydana gelir. Bu süreç sırasında hücreye enerji sağlayan ek ATP molekülleri açığa çıkar.

Ortamda oksijen bulunmadığı zaman pirüvatın laktik aside dönüşmesi NADH'den tekrar NAD+ elde edilmesini sağlar. Laktat daha fazla parçalanamasa dahi NAD+ yenilendiği için yeni glikoz moleküllerinin parçalanmasında kullanılabilir, az miktarda ATP üretimi sağlanır. Laktat hücreden dışarı difüzyonla çıkar.

Laktik asit fermantasyonu, aşağıda özet olarak verilmiş tepkimelerden meydana gelir:

Glikoliz: + 2 NAD++ 2 ADP + 2 Pi2+ 2 NADH + 2 H+ + 2 ATP + 2 H2O
(glikoz) (pirüvik asit)
Laktik asit
oluşumu:
2+ 2 NADH 2 +2 NAD+
(pirüvik asit) (Laktik asit)
Net tepkime:+ 2 ADP + 2 Pi2+ 2 ATP + 2 H+ + 2 H2O
(glikoz) (Laktik asit)

İnsan vücudunda laktik asit fermantasyonu

Kas hücreleri kandan yeterince oksijen elde edemeyince laktik asit fermantasyonu ile enerji üretmeye devam ederler. Ancak laktik asit ortamın pH'sini düşürür. Glikolizin tersinmez bir tepkimesini sentezleyen fosfofruktokinaz enzimi düşük pH'de inhibe olur, bu yüzden aşırı laktat üretimi ve kanda asidoz meydana gelmez.

Bazı hücreler, örneğin karaciğer ve kalp kas hücreleri, laktatı kolaylıkla içlerine alıp onu pirüvata çevirirler, sonra da normal yolla (sitrik asit döngüsüyle) metabolize ederler. Oksijen kıtlığı çeken kas hücrelerinin aksine bu hücrelerde bol oksijen olduğu için onlarda laktat birikmez. Bu sayede kas hücreleri de glikozu parçalamaya devam edebilirler. glikozun yıkımıyla elde edilir. Karaciğerde glikoza ardından glikojene dönüşüp depolanabilir.

Gıda üretiminde rolü

Laktik asit fermantasyonu neolitik çağdan beri kullanılmıştır. Laktik asitin etkisiyle gıda asitlenir, bu da bozulmaya neden olacak mikroorganizmaların büyümesini engeller, hatta öldürebilir. Bunun örnekleri sütün ekşimesinden elde edilen yoğurt, yayık ayranı, tuzsuz beyaz peynir, sayılabilir. Alman lahana turşusu (sauerkraut), Korelilerin kimçisi ve diğer bazı başka turşu türleri de bu şekilde hazırlanır.

Hayvancılıkta rolü

Yazın elde edilen yeşil otların kışa kadar dayanması için laktik asit fermantasyonuna tâbi tutulması işlemine silaj denir. Yeşil otlar, silolara doldurularak veya plastikle örtülerek oksijenle teması kesilir. Bu ortamda büyüyen laktik asit bakterileri ortamı asitlendirerek silajın bozulmasına neden olabilecek diğer organizmaların büyümesine engel olurlar.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Fermantasyon</span> kimyasal çürüme

Fermantasyon, hücre içinde oksijen yokluğunda meydana gelen metabolik bir faaliyet olarak ‘NAD+'yi yeniden oluşturmak için glikozun glikoliz yoluyla kısmi oksidasyonunu takip eden metabolik adımlar’ şeklinde tanımlanmaktadır. Fermantasyon anaerobik şartlarda, yani oksidatif fosforilasyon olamadığı durumlarda, glikoliz yoluyla ATP üretimini sağlayan önemli bir biyokimyasal süreçtir. Biyokimyanın fermantasyonla ilgilenen dalı zimolojidir.

<span class="mw-page-title-main">Lipit</span> Katı ve sıvı yağ

Lipit, tüm canlıların yapısında bulunan temel organik bileşiklerden biridir. Lipitler, doymuş ve doymamış yağlar olarak ayrılır. Doymamış yağlar, oda sıcaklığında sıvı hâlde bulunan lipitler; doymuş yağlar ise oda sıcaklığında katı hâlde bulunan lipitlerdir. Biyolojik önemi olan lipitler için yağ asitleri, nötr lipitler (trigliserit), fosfolipitler ve steroitler örnek gösterilebilir. Lipitler, insan ve hayvanların temel besinleri arasında yer alır.

<span class="mw-page-title-main">Glikoliz</span> katabolik yolak

Glikoliz, glikozun enzimlerle pirüvik asite (pirüvat) kadar yıkılması olayıdır. Bütün canlılarda glikoliz reaksiyonları aynı şekilde gerçekleşir çünkü olaylar için tüm canlılarda aynı enzimler görevlidir. Başlangıçta glikozu aktifleştirmek için 2 ATP harcanır. Reaksiyonlar sırasında 4 ATP(Adenozin tri fosfat) oluşturulur. 2 NADH meydana gelir. Oluşan NADH'lar oksijenli solunumda elektron taşıma sistemine aktarılır ve her birinden üçer ATP elde edilir. Oksijensiz solunumda ise NADH'lar son ürün evresinde tekrar yükseltgenerek bir sonraki glikoliz olayında kullanılır. Kısacası glikolizde substrat düzeyinde fosforilasyonla 4 ATP üretilir. Ve 2ATP harcandığı için net kazanç 2 ATP 'dir. Ancak oluşan 2NADH iyonundan dolaylı olarak 6 ATP(Adenozin tri fosfat)ETS'den kazanılır.

Hidroliz işlemi suyu oluşturan hidrojen ve oksijen elementlerinin birbirinden ayrılması ile sonuçlanan bir işlemdir. Bazı kaynaklarda hidroliz, moleküllerin su ilavesiyle daha fazla sayıda parçacık oluşturması olarak da geçer. Hidroliz, su ile bir kimyasal bağın parçalanmasıdır yani bir kimyasal reaksiyondur. Hidroliz genel olarak suyun nükleofil olduğu ikame(yer değiştirme reaksiyonu), eliminasyon(organik reaksiyon türü) ve solvasyon (çözme) reaksiyonları için kullanılır.

<span class="mw-page-title-main">Laktik asit</span> Stereoizomer grubu

Laktik asit, kimyasal formülü C₃H₆O₃ olan organik bir asittir. İzomerik iki formu vardır: L(+) laktik asit ve D(-) laktik asit. Laktik asit, birçok doğal süreçte ve mikroorganizmalar tarafından fermantasyon sırasında üretilir. Bu asit, sütte de doğal olarak bulunur ve bu nedenle "laktik" adını almıştır.

<span class="mw-page-title-main">Rigor mortis</span>

Rigor mortis veya ölüm sertliği, kaslardaki biyokimyasal bir değişiklikten kaynaklanan ve ölünün uzuvlarını katılaştıran bir ölüm belirtisidir. Bu olgu, oda sıcaklığındaki bir insanda ölümden 3-4 saat sonra görülmeye başlar, 12 saat sonra doruk noktasına ulaşır ve 36 saat sonra ortadan kalkar.

<span class="mw-page-title-main">Adenozin trifosfat</span> organik bileşi

'Adenozin trifosfat, hücre içinde bulunan çok işlevli bir nükleotittir. İngilizce Adenosine Triphosphateden ATP olarak kısaltılır. En önemli işlevi hücre içi biyokimyasal reaksiyonlar için gereken kimyasal enerjiyi taşımaktır. Fotosentez ve hücre solunumu sırasında oluşur. ATP bunun yanı sıra RNA sentezinde gereken dört monomerden biridir. Ayrıca ATP, hücre içi sinyal iletiminde protein kinaz reaksiyonu için gereken fosfatın kaynağıdır. 3 tane fosfattan oluşur.

<span class="mw-page-title-main">Katabolizma</span> Molekülleri daha küçük birimlere parçalayan metabolik yollar kümesi

Yadımlama veya katabolizma, enerjice zengin ve büyük moleküllü moleküllerin daha küçük moleküllere parçalanması olayı ve bu işlemler sürecidir. Yani metabolizmanın yıkım aşamaları olarak da genellenebilir. Katabolizma kapsamında besin maddeleri niteliğinde olan uzun moleküllerin hücre içinde enzimlerin katalizörlüğünde parçalanarak, molekül bağlarında depolanmış enerji açığa çıkarılıp kullanılır.

Oksidatif fosforilasyon, canlılarda enerji kaynağı olarak kullanılan ATP sentezinde kullanılan yollardan biridir. Fosforilasyon olarak da adlandırılan ATP sentezi başlıca dört yoldan gerçekleştirilir.

<span class="mw-page-title-main">Oksijenli solunum</span> Hücresel solunum

Oksijenli solunum, organik besinlerden oksijen yoluyla ATP elde etme işidir. Hücrelerdeki bazı kimyasal tepkimelerde kullanılan enerjinin oksijen kullanılarak açığa çıkarılması demektir. Biyoloji ders kitapları sık sık hücresel solunum sırasında glikoz molekülü başına 38 ATP molekülü üretildiğini söylese de sızıntılı zarların yanı sıra mitokondriyal matrikse pirüvat ve ADP hareketinin maliyetinden dolayı %100 verim olamayacağından bu sayıya asla ulaşılmaz, mevcut tahminler glikoz başına 29 ilâ 30 ATP dolayındadır.

<span class="mw-page-title-main">Redoks</span> Atomların oksidasyon durumlarının değiştiği kimyasal reaksiyon

Redoks atomların oksidasyon durumlarının değiştiği bir tür kimyasal reaksiyondur. Redoks reaksiyonları, kimyasal türler arasında elektronların fiili veya biçimsel aktarımı ile karakterize edilir, çoğunlukla bir tür oksidasyona, diğer türler indirgemeye uğrar. Elektronun çıkarıldığı kimyasal türlerin indirgenmiş olduğu söyleniyor. Başka bir deyişle:

<span class="mw-page-title-main">Etanol fermantasyonu</span> Yan ürün olarak etanol ve karbondioksit üreten biyolojik süreç

Etanol fermantasyonu, solunumda oksijen kullanmayan canlılar için bir fermantasyon biçimidir.

<span class="mw-page-title-main">Nikotinamid adenin dinükleotit</span> İndirgenen ve oksitlenen kimyasal bileşik

Nikotinamid adenin dinükleotid (NAD+) hücrelerde bulunan önemli bir koenzimdir. Elektron taşıyarak indirgenme potansiyelinin moleküller arasında aktarılmasında rol oynar.

<span class="mw-page-title-main">Krebs döngüsü</span> Hücrelerde enerji açığa çıkarmak için kimyasal reaksiyonlar

Krebs döngüsü, trikarboksilik asit döngüsü veya sitrik asit döngüsü, canlı hücrelerin besinleri yükseltgeyerek enerji elde etmesini sağlayan ve bütün yaşam biçimlerinde önemli bir yer tutan kimyasal süreçlerin son aşamasıdır. TCA devri olarak da bilinir. 1937'de Hans Adolf Krebs tarafından açıklığa kavuşturulan tepkimelerin hayvan, bitki, mikroorganizma ve mantar gibi birçok hücre türünde oluştuğu saptanmıştır.

Elektron taşıma sistemi veya elektron taşıma zinciri (İngilizce: Electron Transport System), NADH ve FADH2 gibi elektron taşıyıcılarının verdikleri elektronları ETS elemanlarında redoks tepkimelerine sokarak ATP üretimini sağlayan sistemin adıdır.Kristada bulunur.Kıvrımlı olan zar yüzeyinin genişlemesini saglar.Böylece enzimlerin etkinliklerinin artmasına olanak sağlar.Elektronlar, son elektron alıcısı oksijene varana kadar ETS elemanları boyunca taşınırlar ve enerji kaybederler. Elektronların verdiği enerji ETS elemanları tarafından protonların aktif taşınmasında kullanılır ve ETS elemanlarının üzerinde bulunduğu çift katlı fosfolipid zarının iki tarafında potansiyel fark oluşturulur. Bu potansiyel fark daha sonra ATP sentezi için kullanılır. Burada ATP sentezi H+ iyonlarının derişim farklılığına bağlı olarak dışarı pompalanır. Bu sırada ATP sentez enzimi aktifleşir ve ATP sentezlenir. ETS elemanları, ökaryotik hücrelerde mitokondri ve kloroplast organellerinde bulunur.

<span class="mw-page-title-main">Kemiosmoz</span> Hücresel solunumu sağlayan elektrokimyasal prensip

Kemiosmoz; iyonların, elektrokimyasal gradyanı azaltmak için seçici geçirgen bir zardan geçme hareketidir. Hücresel solunumdaki ATP sentezinin gerçekleşmesini sağlayan enerjinin büyük bir kısmı hidrojenlerin yaptığı bu hareketten karşılanır.

<span class="mw-page-title-main">Hidrojen siyanür</span>

Hidrojen siyanür, HCN formüllü inorganik bir bileşiktir. Endüstriyel ölçekte üretilen HCN, polimerlerden ilaçlara kadar birçok kimyasal bileşik için oldukça değerli bir öncüdür. Büyük ölçekli uygulamalar, sırasıyla madencilik ve plastikte kullanılan potasyum siyanür ve adiponitril üretimi içindir. Hidrojen siyanür, 25 °C'de kaynayan renksiz acıbadem kokusunda bir sıvıdır. Uçucu bir sıvı olduğundan, katı siyanür bileşiklerinden daha zehirlidir.

Pastör (Pasteur) etkisi, oksijenin fermantasyon olayı üzerine olan inhibitör etkisidir.

<span class="mw-page-title-main">Şaraptaki şekerler</span>

Şaraptaki şekerler şarap yapımını mümkün kılan doğa olayının merkezindedir. Fermantasyon işleminde, şarap üzümlerinden gelen şekerler parçalanır ve maya tarafından alkole (etanol) ve karbon dioksite dönüştürülür. Üzümler, yapraklardan fotosentez ile üretilen sakaroz moleküllerinin yer değiştirmesi yoluyla asmada büyürken şeker biriktirir. Olgunlaşmada sakaroz molekülleri invertaz enzimi tarafından hidrolize (ayrılır) edilip glukoz ve fruktoz'a dönüşür. Hasat zamanına kadar, üzümün %15 ila %25'i basit şekerlerden oluşur. Hem glikoz hem de fruktoz, altı-karbonlu şekerdir ancak üzümde üç, dört, beş ve yedi karbonlu şekerler de bulunur. Beş karbonlu arabinoz, ramnoz ve ksiloz gibi şekerler fermantasyondan sonra hala şarapta mevcut olduğundan, tüm şekerler mayalanabilir değildir. Çok yüksek şeker içeriği, belirli bir (yüksek) alkol içeriğine ulaşıldığında mayayı öldürür. Bu nedenle hiçbir şarap tamamen "sek" tamamen mayalanmaz. Şarabın alkol içeriğini belirlemede şekerin rolü, şarap yapımında yalnızca alkol içeriğini artırmak için şaptalizasyon olarak bilinen süreçte bazen şarap üreticilerini şeker eklemeye teşvik eder.

<span class="mw-page-title-main">Malolaktik fermantasyon</span>

Malolaktik fermantasyon, üzüm şırasında doğal olarak bulunan ekşi tadı olan malik asidin daha yumuşak tadı olan laktik aside dönüştürüldüğü bir şarap yapım sürecidir. Malolaktik fermantasyon çoğunlukla birincil fermantasyonun bitiminden kısa bir süre sonra ikincil fermantasyon olarak gerçekleştirilir, ancak bazen onunla aynı anda da gerçekleştirilebilir. Bu süreç çoğu kırmızı şarap üretimi için standarttır ve reaksiyonun bir yan ürünü olan diacetyl'den "tereyağlı" bir tat verebildiği Chardonnay gibi bazı beyaz üzüm çeşitleri için yaygındır.