İçeriğe atla

LED

Bir LED lamba
LED lambalar

LED (light-emitting diode, Işık Yayan Diyot), yarı-iletken, diyot temelli, ışık yayan bir elektronik devre elemanıdır. 1920'lerde Rusya Sovyet Federatif Sosyalist Cumhuriyeti'nde icat edildi ve 1962 yılında Amerika'da pratik olarak uygulanabilen elektronik bir bileşen haline getirildi. Oleg Vladimirovich Losev adlı bir radyo teknisyeni radyo alıcılarında kullanılan diyotların ışık yaydığını fark etti ve 1927 yılında bir Sovyet gazetesinde LED hakkında buluşlarını yayımladı.

Başlangıçta yalnızca zayıf kırmızı ışık verebiliyorlardı ama çağdaş ledler görünür ışık, morötesi, kızılötesi gibi çeşitli dalga boylarında, yüksek parlaklıkta ışık verebilir.

Az enerji tüketimi, uzun ömür, sağlamlık, küçük boyutu ve hızlı açılıp kapanabilme gibi geleneksel ışık kaynaklarına göre birçok avantajı vardır. Ancak biraz daha pahalıdır.

LED lamba ve dijital tabela gibi çeşitli alanlarda uygulanabilmektedir.

Tarihçe

Keşifler ve ilk cihazlar

SiC kristalinin üzerindeki noktasal temasından elde edilen yeşil elektrolüminesans, H. J. Round'un 1907'deki orijinal deneyi.

Elektrolüminesans bir doğa olayı olarak 1907'de Marconi Labs'tan İngiliz deneyci H. J. Round tarafından Silisyum karbür kristali ve kedi bıyığı dedektörü kullanarak keşfedildi.[1][2] Rus mucit Oleg Vladimirovich Losev, 1927'de ilk LED'in buluşunu raporladı.[3] Araştırması Sovyet, Alman ve İngiliz bilim dergilerinde dağıtıldı, ancak birkaç on yıl boyunca keşfin hiçbir pratik kullanımı yapılmadı.[4][5]

1936'da Georges Destriau, çinko sülfür (ZnS) tozu bir yalıtkanda askıya alınıp üzerine alternatif elektrik alanı uygulandığında elektrolüminesansın oluşturulabileceğini gözlemledi. Destriau, yayınlarında genellikle lüminesanstan Losev-Işığı olarak bahseder. Destriau, aynı zamanda radyum üzerine araştırma yaparak lüminesans alanında ilk öncülerden biri olan Madam Marie Curie'nin laboratuvarlarında çalıştı.[6][7]

Macar Zoltán Lajos Bay, György Szigeti ile birlikte 1939'da Macaristan'da mevcut safsızlıklara bağlı olarak beyaz, sarımsı beyaz veya yeşilimsi beyaz ışık veren, bor karbür seçeneğiyle silikon karbür temelli bir aydınlatma cihazının patentini alarak LED aydınlatma'nın önünü açtı.[8]

Kurt Lehovec, Carl Accardo ve Edward Jamgochian bu ilk LED'leri 1951'de bir pil veya darbe üreteçli akım kaynaklı SiC kristalleri kullanan bir aparatı ve 1953'te bir çeşit, saf, kristalle karşılaştırmayı kullanarak açıkladı.[9][10]

1955'te Radio Corporation of America'ndan Rubin Braunstein,[11] galyum arsenit (GaAs) ve diğer yarı iletken alaşımlardan gelen kızılötesi emisyonu raporladı.[12] Braunstein oda sıcaklığında ve 77 Kelvin sıcaklıktaki galyum antimonit (GaSb), GaAs, indiyum fosfit (InP) ve silikon-germanyum (SiGe) kullanan basit diyot yapılarının verdiği kızılötesi emisyonu gözlemledi.

1957'de Braunstein, ilkel cihazların kısa mesafelerde telsiz olmayan iletişim için kullanılabileceğini de gösterdi.

Kroemer tarafından belirtildiği gibi[13] Braunstein "...basit bir optik iletişim bağlantısı kurmuştu: Plakçalardan çıkan müzik, GaAs diyodunun ileri akımını modüle etmek için uygun elektronik devreler aracılığıyla kullanılmıştı. Çıkan ışık, biraz uzaktaki PbS diyodu tarafından tespit edildi. Bu sinyal ses yükselticiye beslendi ve hoparlör tarafından çalındı. Işının kesilmesi müziği durdurdu. Bu kurulumla oynarken çok eğlendik." Bu kurulum optik iletişim uygulamaları için LED'lerin kullanımının habercisiydi.

TO-18 transistör metal kasasında bulunan 1962 Texas Instruments SNX-100 GaAs LED'i

Eylül 1961'de James R. Biard ve Gary Pittman Dallas, Teksas’ta Texas Instruments'da çalışırken GaAs altlık üzerine yaptıkları tünel diyodundan çıkan yakın-kızılötesi (900 nm) ışığını keşfettiler.[14] Ekim 1961'de, GaAs p-n bağlantılı ışık yayıcısı ile elektriksel olarak yalıtımlı bir yarı iletken fotodetektör arasında verimli ışık yayılımı ve sinyal eşleşmesini göstermişlerdi.[15]

8 Ağustos 1962'de Biard ve Pittman bulgularına dayanarak, ileri doğru bias altında kızılötesi ışığın verimli şekilde yayılmasını sağlamak için aralıklı katot kontaklı bir çinko-difüzyonlu p–n bağlantılı LED'i tanımlayan "Yarı İletken Radyant Diyot" başlıklı bir patent başvurusunda bulundular.

General Electric Laboratuvarları, RCA Araştırma Laboratuvarları, IBM Araştırma Laboratuvarları, Bell Laboratuvarları ve Massachusetts Teknoloji Enstitüsü'ndeki Lincoln Laboratuvarı'ndan önceki mühendislik not defterlerine dayanan çalışmalarının önceliğini belirledikten sonra Birleşik Devletler Patent ve Ticari Marka Ofisi iki mucite ilk pratik LED olan GaAs kızılötesi ışık veren diyodun patentini (A.B.D. Patenti US3293513 12 Haziran 2018 tarihinde Wayback Machine sitesinde arşivlendi.) verdi.[14] Texas Instruments (TI), patent başvurusunun hemen ardından kızılötesi diyot üretimi için proje başlattı. Ekim 1962'de TI, 890 nm ışık çıkışı yayan saf GaAs kristalini kullanan ilk ticari LED ürününü (SNX-100) duyurdu.[14] Ekim 1963'te TI, ilk ticari yarı küresel LED olan SNX-110'u duyurdu.[16]

İlk görünür spektrumlu (kırmızı) LED, J. W. Allen ve R. J. Cherry tarafından 1961'in sonlarında Baldock, İngiltere'deki SERL'de gösterildi. Bu çalışma Journal of Physics and Chemistry of Solids, Cilt 23, Sayı 5, Mayıs 1962, sayfa no 509–511'de bildirilmiştir. İlk cihazlardan bir başkası Nick Holonyak tarafından 9 Ekim 1962'de General Electric için Syracuse, New York çalışırken gösterildi.[17] Holonyak ve Bevacqua bu LED'i 1 Aralık 1962'de Applied Physics Letters dergisinde raporladı.[18][19] Holonyak'ın eski bir yüksek lisans öğrencisi olan M. George Craford,[20] ilk sarı LED'i icat etti ve 1972'de kırmızı ve kırmızı-turuncu LED'lerin parlaklığını on kat artırdı.[21] 1976'da T. P. Pearsall, optik fiber iletim dalga boylarına özel uyarlanmış yeni yarı iletken malzemeleri icat ederek fiber optik telekomünikasyon için ilk yüksek parlaklıkta, çok verimli LED'leri tasarladı.[22]

İlk ticari geliştirme

İlk ticari görünür dalga boylu LED'ler, akkor ve neon gösterge lambaları yerine yedi-segment göstergelerde,[23] ilk önce laboratuvar ve elektronik test cihazları gibi pahalı ekipmanlarda daha sonra hesap makineleri, TV'ler, radyolar, telefonlar ve saatler gibi cihazlarda (sinyal kullanımları listesine bakın) kullanıldı. 1968 yılına kadar görünür ve kızılötesi LED'ler tanesi US$200 mertebeleri gibi çok pahalıydı ve bu nedenle pratikte çok az kullanıldı.[24]

1962 ve 1968 yılları arasında Hewlett-Packard (HP), Howard C. Borden, Gerald P. Pighini yönetimindeki bir araştırma ekibi ile HP Associates ve HP Labs'te pratik LED'ler üzerinde araştırma ve geliştirme (Ar-Ge) yaptı.[25] Bu süre zarfında HP, ilk kullanılabilir LED ürünlerini geliştirmek için Monsanto Şirketi ile işbirliği yaptı.[26] Kullanılabilir ilk LED ürünleri, her ikisi de 1968'de piyasaya sürülen HP'nin LED ekran ve Monsanto'nun LED gösterge lambası idi.[26] Monsanto, göstergelere uygun kırmızı LED'ler üretmek için 1968'de GaAsP kullanarak görünür LED'leri seri üreten ilk kuruluştu.[24] Monsanto daha önce HP'ye GaAsP sağlamayı teklif etmişti, ancak HP kendi GaAsP'sini geliştirmeye karar verdi.[24] Şubat 1969'da Hewlett-Packard, entegre devre (tümleşik LED devresi) teknolojisini kullanan ilk LED aygıtı olan HP Model 5082-7000 Sayısal Göstergeyi piyasaya sürdü.[25] Bu, ilk akıllı LED ekrandı ve Nixie tüpü'nün yerini alarak dijital ekran teknolojisinde devrim yapıp sonraki LED ekranların temeli oldu.[27]

Özellikleri

  1. Ledler yarı iletken malzemelerdir.
  2. Ana maddeleri silisyumdur.
  3. Üzerinden akım geçtiğinde foton açığa çıkararak ışık verirler.
  4. Farklı açılarda ışık verecek şekilde üretilmektedirler.
  5. Ledlerin gerilim-akım grafikleri üsteldir. Uygun çalışma noktasındayken ledin üzerindeki küçük bir gerilim değişimi büyük bir akım değişimine neden olur. Yüksek akım nedeniyle bozulmaması için ledlere seri bir akım sınırlama direnci bağlanır. Böylece hassas olmayan gerilim aralıklarında ledin bozulması engellenir.
  6. Ledler tıpkı bir Zener diyot gibi üzerinde sabit bir gerilim düşürür.

Ayrıca

  1. Kırmızı LED 2,20 Volt
  2. Yeşil LED 3,30 Volt
  3. Mavi ve Beyaz LED 3,40 Volt gerilimle çalışır.

Bağlantı şekilleri

Bağlantıların her birinde karışık led çeşitleri kullanılabilir. Her çeşidin kendine göre ileri ön-gerilimi vardır. Dolayısıyla böyle bir kullanımda tüm hesaplar ayrı ayrı yapılmalıdır.

Seri bağlantıda 20 mA altında ledin ileri ön gerilimi bilinmelidir. N tane ledi birbirine seri bağlıyorsak ledlerin üzerinde toplamda U_ledT = X * U_led (ya da U_ledT = U_led1 + U_led2 + ... + U_ledN) Voltluk bir gerilim oluşur. Elimizde muhtemelen bir gerilim kaynağı olacaktır. Devreye seri olarak bağladığımız dirençte de geri kalan gerilim düşmelidir. Yani U_direnç = U_kaynak - U_ledT Led sisteminden 20 mA geçtiği bilinmektedir. Buna göre direnç hesaplanabilir: R (K ohm)= U_direnç (V) / 20 (mA)

Türler

LED'ler çeşitli şekil ve boyutlarda üretilmektedir. Plastik merceğin rengi genellikle yayılan ışığın gerçek rengiyle aynıdır ama her zaman değil. Örneğin, mor plastik genellikle kızılötesi LED'ler için kullanılır ve çoğu mavi cihazın renksiz muhafazaları vardır. Aydınlatma ve arkadan aydınlatma için kullanılanlar gibi modern yüksek güçlü LED'ler genellikle yüzeye montaj teknoloji (SMT) paketlerindedir. (resimde gösterilmemiştir).

LED'ler farklı uygulamalar için farklı paketlerde yapılır. Gösterge veya pilot lamba olarak kullanılmak üzere tek minyatür cihazda tek veya birkaç LED bağlantısıyla paketlenebilir. LED dizisi, aynı pakette bir direnç, yanıp sönen veya renk değiştiren kontrol veya RGB cihazları için adreslenebilir kontrolör gibi kumanda devrelerini içerebilir. Daha yüksek güçlü beyaz ışık veren cihazlar, soğutuculara takılarak aydınlatmada kullanılır. Nokta matrisli veya çubuk biçimli alfanümerik göstergelerin kullanımı yaygındır. Özel paketler, yüksek hızlı veri iletişim bağlantıları için LED'lerin optik fiberlere bağlanmasına imkan verir.

Minyatür LED

En yaygın boyutlardaki minyatür SMD LED'in görüntüsü. Sol üst köşede gösterilen geleneksel 5 mm lamba tipi LED'den çok daha küçük olabilirler.
Altın tel bağlamalı çok küçük (1,6×1,6×0,35 mm) kırmızı, yeşil ve mavi, yüzeye monteli minyatür LED paketi

Bunlar çoğunlukla gösterge olarak kullanılan tek kalıplı LED'lerdir ve 2 mm'den 8 mm'ye kadar çeşitli boyutlarda, deliğe montajlı ve yüzeye montajlı paketlerde satılır.[28] Tipik akım derecelendirmeleri yaklaşık 1  mA ile 20  mA arasındadır. Esnek bir destek bandına bağlı çoklu LED kalıpları bir LED şerit ışığı oluşturur.

Yaygın ambalaj şekilleri arasında yuvarlak, kubbeli veya düz tepeli, üstü düz dikdörtgen (çubuk grafik ekranlarda kullanıldığı gibi) ve üstü düz üçgen veya kare vardır. Kapsülleme ayrıca zıtlığı ve görüş açısını iyileştirmek için şeffaf veya renkli olabilir. Kızılötesi cihazların, kızılötesi radyasyonu geçerken görünür ışığı engellemek için siyah bir tonu olabilir.

Ultra yüksek çıkışlı LED'ler doğrudan güneş ışığında görüntülemek için tasarlanmıştır.

5 V ve 12 V LED'ler, 5 V veya 12 V kaynağa doğrudan bağlantı için seri direnci olan sıradan minyatür LED'lerdir.

Yüksek güçlü LED’ler

LED yıldız tabanına bağlı yüksek güçlü ışık veren diyotlar (Luxeon, Lumileds)

Diğer LED'ler için onlarca mA ile karşılaştırıldığında, yüksek güçlü LED'ler (HP-LED'ler) veya yüksek çıkışlı LED'ler (HO-LED'ler), yüzlerce mA'den bir amper ve daha fazla akımlara kadar sürülebilir. Bazıları bin lümenin üzerinde ışık verebilir.[29][30] 300 W/cm2 değerine kadar LED güç yoğunlukları elde edildi. Aşırı ısınma cihazı bozduğundan, ısı dağılımına izin vermek için HP-LED'ler bir ısı emici üzerine monte edilmelidir. HP-LED'den gelen ısı giderilmezse, cihaz saniyeler içinde arızalanır. HP-LED, genellikle el feneri içindeki akkor ampulün yerini alabilir veya güçlü bir LED lamba oluşturacak şekilde bir diziye yerleştirilebilir.

Bu kategorideki bazı iyi bilinen HP-LED'ler, Nichia 19 serisi, Lumileds Rebel Led, Osram Opto Semiconductors Golden Dragon ve Cree X-lamp'dır. Eylül 2009 itibarıyla, Cree tarafından üretilen bazı HP-LED'ler artık 105lm/W'yi aşmaktadır.[31]

LED'lerin zaman içinde ışık çıkışında ve verimliliğinde üstel bir artış öngören Haitz yasası örnekleri, 2009'da 105 lm/W[31] değerine ulaşan CREE XP-G serisi LED ve 2010'da piyasaya sürülen 140 lm/W tipik verimli Nichia 19 serisi'dir.[32]

AC beslemeli

Seoul Semiconductor tarafından geliştirilen LED'ler, DC dönüştürücü olmadan AC gücüyle çalışabilir. Her yarım döngü için, LED'in bir kısmı ışık yayar ve bir kısmı karanlıktır ve bu, sonraki yarım döngü sırasında tersine çevrilir. Bu tür HP-LED'in verimliliği tipik olarak 40 lm/W'dir.[33] Seri bağlı çok sayıda LED elemanı doğrudan hat voltajından çalışabilir. 2009'da Seoul Semiconductor, basit bir kontrol devresi ile AC gücünden çalıştırılabilen, 'Acrich MJT' adlı yüksek DC voltajlı bir LED piyasaya sürdü. Bu LED'lerin düşük güç dağılımı, onlara orijinal AC LED tasarımından daha fazla esneklik sağlar.[34]

Uygulamaya özel LED çeşitleri

Yanıp sönen LED

Yanıp sönen LED'ler, harici elektronik aksam gerektirmeden dikkat çekme göstergeleri olarak kullanılır. Yanıp sönen LED'ler standart LED'lere benzer, ancak entegre bir voltaj regülatörü ve LED'in tipik bir saniyelik bir süre ile yanıp sönmesine neden olan multivibratör devresi içerirler. Dağınık lensli LED'lerde bu devre küçük siyah bir nokta olarak görünür. Yanıp sönen LED'lerin çoğu tek renkli ışık yayar, ancak daha gelişmiş cihazlar birden çok renk arasında yanıp sönebilir ve hatta RGB renk karışımını kullanarak bir renk dizisinde solabilir. 0805 ve diğer boyutlardaki yanıp sönen SMD LED'leri 2019'un başından beri mevcuttur.

İki renkli

Çift renkli LED'ler bir kasada iki farklı LED emiter içerir. Bunların iki türü vardır. Bir tipi, birbirine aynı iki uca antiparalel bağlı iki kalıptan oluşur. Bir yöndeki akım bir renk yayar ve ters yöndeki akım diğer rengi çıkarır. Diğer tip ise her iki kalıp için ayrı uçlara sahip iki kalıptan ve bağımsız olarak kontrol edilebilmeleri için ortak anot veya katot için başka bir uçtan oluşur. En yaygını iki renkli kombinasyon kırmızı/geleneksel yeşil'dir. Diğerleri kehribar/geleneksel yeşil, kırmızı/saf yeşil, kırmızı/mavi ve mavi/saf yeşildir.

RGB üç renkli

Üç renkli LED'ler, bir kasada üç farklı LED yayıcı içerir. Her bir yayıcı, bağımsız olarak kontrol edilebilmeleri için ayrı bir kabloya bağlanır. Bir ortak uç (anot veya katot) ve her renk için ek bir uç ile dört uçlu bir düzenleme tipiktir. Diğerlerinin yalnızca iki ucu (pozitif ve negatif) vardır ve yerleşik bir elektronik denetleyiciye sahiptir.

RGB-SMD-LED

RGB LED'ler bir kırmızı, bir yeşil ve bir mavi LED'den oluşur.[35] Üçünün her birini bağımsız olarak ayarlama yaparak, RGB LED'ler geniş bir renk gamı üretebilir. Özel renkli LED'lerin aksine, bunlar saf dalga boyları üretmez. Modüller, pürüzsüz renk karışımı için optimize edilmemiş olabilir.

Dekoratif-çok renkli

Dekoratif-çok renkli LED'ler, yalnızca iki çıkış kablosuyla sağlanan farklı renklerde birkaç yayıcı içerir. Renkler, besleme voltajı değiştirilerek dahili olarak değiştirilir.

Alfanümerik

1608/0603 tipi SMD LED'ler kullanan bir 11 × 44 LED matris yaka yaka kartı ekranının birleşik görüntüsü. Üst: 21 × 86 mm ekranın yarısından biraz fazlası. Merkez: Ortam ışığında LED'lerin yakından görünümü. Altta: LED'ler kendi kırmızı ışıklarında.

Alfanümerik LED'ler yedi segmentli, yıldız patlaması ve nokta matrisi biçiminde mevcuttur. Yedi bölümlü ekranlar, tüm sayıları ve sınırlı sayıda harfi işler. Yıldız patlaması ekranları tüm harfleri görüntüleyebilir. Nokta matrisli ekranlar tipik olarak karakter başına 5×7 piksel kullanır. Yedi segmentli LED ekranlar 1970'lerde ve 1980'lerde yaygın olarak kullanılıyordu, ancak sıvı kristal ekranların artan kullanımı, daha düşük güç ihtiyaçları ve daha fazla ekran esnekliği ile sayısal ve alfanümerik LED ekranların popülaritesini azalttı.

Kullanım alanları

Trafik ışıklarında LED kullanımı

Ledlerde mavi ışığın kullanılabilmesi ile RGB (Kırmızı Yeşil Mavi) aydınlatma mümkün olmuş ve birçok sektörde uygulama alanı bulmuştur. Özellikle Aydınlatma, sinyalizasyon ve mimari aydınlatma alanlarında diğer ışık kaynaklarının yerini hızla almaya başlamışlardır. Ledlerin enerji sarfiyatlarındaki düşüklüğünün en önemli sebebi kayıplarının az olmasıdır.

Ayrıca ömürleri oldukça uzun olan bu diyotlar diğer ampuller gibi flaman taşımadıklarından dolayı hemen her koşulda sorunsuz kullanılabilirler.

Bugün ulaşılan aydınlatma değerleri beyaz renk için 140 Lümen/Watt gibi oldukça yüksek bir değerle floresant lambaları geçmiş bulunmaktadır, Bazı prototiplerde 180 lümen/watt oranına ulaşılmıştır. Boğaz Köprüsü'nde 2008 yılında yapılan ışıklandırmada da LED teknolojisi kullanılmıştır.

LEDler üzerlerine, yaydıkları ışığın frekansı ile aynı veya daha yüksek bir frekansta ışık düşürüldüğünde fotodiyot özelliği gösterirler. Bu özelliklerinden yararlanılarak elektronik cihazlarda tuş olarak da kullanılmaktadırlar.Makineler, TV ve monitörlerde de kullanılmaktadır.

Ayrıca bakınız

Kaynakça

  1. ^ Round, H. J. (1907). "A note on carborundum". Electrical World. 19: 309. 
  2. ^ Margolin J. "The Road to the Transistor". jmargolin.com. 19 Nisan 2001 tarihinde kaynağından arşivlendi. 
  3. ^ Losev, O. V. (1927). "Светящийся карборундовый детектор и детектирование с кристаллами" [Luminous carborundum detector and detection with crystals]. Телеграфия и Телефония без Проводов [Wireless Telegraphy and Telephony] (Rusça). 5 (44): 485-494.  English translation: Losev, O. V. (November 1928). "Luminous carborundum detector and detection effect and oscillations with crystals". Philosophical Magazine. 7th series. 5 (39): 1024-1044. doi:10.1080/14786441108564683. 
  4. ^ Zheludev, N. (2007). "The life and times of the LED: a 100-year history" (PDF). Nature Photonics. 1 (4): 189-192. Bibcode:2007NaPho...1..189Z. doi:10.1038/nphoton.2007.34. 11 Mayıs 2011 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: April 11, 2007. 
  5. ^ Lee, Thomas H. (2004). The design of CMOS radio-frequency integrated circuits. Cambridge University Press. s. 20. ISBN 978-0-521-83539-8. 
  6. ^ Destriau, G. (1936). "Recherches sur les scintillations des sulfures de zinc aux rayons". Journal de Chimie Physique. 33: 587-625. doi:10.1051/jcp/1936330587. 
  7. ^ McGraw-Hill Concise Encyclopedia of Physics: electroluminescence. (n.d.) McGraw-Hill Concise Encyclopedia of Physics. (2002).
  8. ^ "Brief history of LEDs" (PDF). 2 Nisan 2019 tarihinde kaynağından (PDF) arşivlendi. 
  9. ^ Lehovec, K; Accardo, C. A; Jamgochian, E (1951). "Injected Light Emission of Silicon Carbide Crystals". Physical Review. 83 (3): 603-607. Bibcode:1951PhRv...83..603L. doi:10.1103/PhysRev.83.603. 11 Aralık 2014 tarihinde kaynağından arşivlendi. 
  10. ^ Lehovec, K; Accardo, C. A; Jamgochian, E (1953). "Injected Light Emission of Silicon Carbide Crystals". Physical Review. 89 (1): 20-25. Bibcode:1953PhRv...89...20L. doi:10.1103/PhysRev.89.20. 
  11. ^ "Rubin Braunstein". UCLA. 11 Mart 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 24 Ocak 2012. 
  12. ^ Braunstein, Rubin (1955). "Radiative Transitions in Semiconductors". Physical Review. 99 (6): 1892-1893. Bibcode:1955PhRv...99.1892B. doi:10.1103/PhysRev.99.1892. 
  13. ^ Kroemer, Herbert (16 Eylül 2013). "The Double-Heterostructure Concept: How It Got Started". Proceedings of the IEEE. 101 (10): 2183-2187. doi:10.1109/JPROC.2013.2274914. 
  14. ^ a b c Okon, Thomas M.; Biard, James R. (2015). "The First Practical LED" (PDF). EdisonTechCenter.org. Edison Tech Center. 8 Aralık 2015 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 2 Şubat 2016. 
  15. ^ Matzen, W. T. ed. (March 1963) "Semiconductor Single-Crystal Circuit Development," Texas Instruments Inc., Contract No. AF33(616)-6600, Rept. No ASD-TDR-63-281.
  16. ^ Carr, W. N.; G. E. Pittman (November 1963). "One-watt GaAs p-n junction infrared source". Applied Physics Letters. 3 (10): 173-175. Bibcode:1963ApPhL...3..173C. doi:10.1063/1.1753837. 
  17. ^ Kubetz, Rick (4 Mayıs 2012). "Nick Holonyak, Jr., six decades in pursuit of light". University of Illinois. 10 Temmuz 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Temmuz 2020. 
  18. ^ Holonyak Nick; Bevacqua, S. F. (December 1962). "Coherent (Visible) Light Emission from Ga(As1−x Px) Junctions". Applied Physics Letters. 1 (4): 82. Bibcode:1962ApPhL...1...82H. doi:10.1063/1.1753706. October 14, 2012 tarihinde kaynağından arşivlendi. 
  19. ^ Wolinsky, Howard (5 Şubat 2005). "U. of I.'s Holonyak out to take some of Edison's luster". Chicago Sun-Times. 28 Mart 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Temmuz 2007. 
  20. ^ Perry, T. S. (1995). "M. George Craford [biography]". IEEE Spectrum. 32 (2): 52-55. doi:10.1109/6.343989. 
  21. ^ "Brief Biography — Holonyak, Craford, Dupuis" (PDF). Technology Administration. 9 Ağustos 2007 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 30 Mayıs 2007. 
  22. ^ Pearsall, T. P.; Miller, B. I.; Capik, R. J.; Bachmann, K. J. (1976). "Efficient, Lattice-matched, Double Heterostructure LEDs at 1.1 mm from GaxIn1−xAsyP1−y by Liquid-phase Epitaxy". Appl. Phys. Lett. 28 (9): 499. Bibcode:1976ApPhL..28..499P. doi:10.1063/1.88831. 
  23. ^ Rostky, George (March 1997). "LEDs cast Monsanto in Unfamiliar Role". Electronic Engineering Times (944). 29 Ocak 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Ocak 2023. 
  24. ^ a b c Schubert, E. Fred (2003). "1". Light-Emitting Diodes. Cambridge University Press. ISBN 978-0-8194-3956-7. 
  25. ^ a b Borden, Howard C.; Pighini, Gerald P. (February 1969). "Solid-State Displays" (PDF). Hewlett-Packard Journal: 2-12. 8 Mayıs 2020 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 29 Ocak 2023. 
  26. ^ a b Kramer, Bernhard (2003). Advances in Solid State Physics. Springer Science & Business Media. s. 40. ISBN 9783540401506. 
  27. ^ "Hewlett-Packard 5082-7000". The Vintage Technology Association. 17 Kasım 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ağustos 2019. 
  28. ^ LED-design. Elektor.com. Retrieved on March 16, 2012. 31 Ağustos 2012 tarihinde Wayback Machine sitesinde arşivlendi.
  29. ^ "Luminus Products". Luminus Devices. 25 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Ekim 2009. 
  30. ^ "Luminus Products CST-90 Series Datasheet" (PDF). Luminus Devices. 31 Mart 2010 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 25 Ekim 2009. 
  31. ^ a b "Xlamp Xp-G Led". Cree.com. Cree, Inc. 13 Mart 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Mart 2012. 
  32. ^ High Power Point Source White Led NVSx219A 29 Temmuz 2021 tarihinde Wayback Machine sitesinde arşivlendi.. Nichia.co.jp, November 2, 2010.
  33. ^ "Seoul Semiconductor launches AC LED lighting source Acrich". LEDS Magazine. 17 Kasım 2006. 15 Ekim 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Şubat 2008. 
  34. ^ Kaynak hatası: Geçersiz <ref> etiketi; IDA isimli refler için metin sağlanmadı (Bkz: )
  35. ^ Ting, Hua-Nong (17 Haziran 2011). 5th Kuala Lumpur International Conference on Biomedical Engineering 2011: BIOMED 2011, 20–23 June 2011, Kuala Lumpur, Malaysia. Springer Science & Business Media. ISBN 9783642217296. 

İlgili Araştırma Makaleleri

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

<span class="mw-page-title-main">Sensör</span>

Sensör,, fiziksel bir olayı tespit etmek amacıyla bir çıkış sinyali üreten cihazdır.

<span class="mw-page-title-main">Diyot</span> Yalnızca bir yönde akım geçiren devre elemanı.

Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki dirençleri ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır.

<span class="mw-page-title-main">Yarı iletken</span> Normal şartlar altında yalıtkan iken belirli fiziksel etkilerde iletken duruma geçen madde

Yarı iletken üzerine yapılan mekanik işin etkisiyle iletken özelliği kazanabilen, normal şartlar altında yalıtkan olan maddelerdir.

Ultraviyole (UV) veya morötesi; dalga boyu görünür ışıktan kısa, ancak X-ışınlarından uzun olan bir elektromanyetik radyasyon şeklidir. Güneş ışığında bulunur ve Güneş'ten çıkan toplam elektromanyetik radyasyonun yaklaşık %10'unu oluşturur. Ayrıca elektrik arkları, Çerenkov radyasyonu, cıva buharlı lambalar, bronzlaşma lambaları ve siyah ışık gibi kaynaklar tarafından üretilir. Uzun dalga boylu UV fotonları atomları iyonize edecek enerjiye sahip olmadığı için iyonlaştırıcı bir radyasyon olarak kabul edilmese de, kimyasal reaksiyonlara neden olabilir ve birçok maddenin parlamasına neden olabilir. Kimyasal ve biyolojik etkiler de dahil olmak üzere pek çok pratik uygulama, UV radyasyonunun organik moleküllerle etkileşime girmesinden türer. Bu etkileşimler emilimi veya ısıtma dahil moleküllerdeki enerji durumlarının ayarlanmasını içerebilir.

<span class="mw-page-title-main">Kızılötesi</span> dalga boyu görünür ışıktan uzun, fakat terahertz ışınımından ve mikrodalgalardan daha kısa olan elektromanyetik ışınımdır

Kızılötesi, görünür ışıktan daha uzun ancak mikrodalgalardan daha kısa dalga boylarına sahip elektromanyetik radyasyondur (EMR). Kızılötesi spektral bant, kırmızı ışığınkinden biraz daha uzun dalgalarla başlar, bu nedenle IR insan gözü için görünmezdir. IR'nin genellikle yaklaşık 750 nm (400 THz) ila 1 mm (300 GHz) arasındaki dalga boylarını içerdiği anlaşılmaktadır.

<span class="mw-page-title-main">Yapay uydu</span> bir astronomik cismin yörüngesine oturtulmuş insan yapımı nesne

Yapay uydular, insanoğlunun geliştirip Dünya'nın veya başka gezegenlerin yörüngesine yerleştirdiği uydulardır. Bu uydular genellikle yarı-bağımsız bilgisayar kontrollü sistemlerdir.

<span class="mw-page-title-main">Fotodiyot</span> p-n bağlantısına dayalı fotodetektör türü

Fotodiyot, görünür ışık, kızılötesi veya ultraviyole radyasyon, X ışınları ve gama ışınları gibi foton radyasyonuna duyarlı bir yarı iletken diyottur. Fotodiyot, fotonları emdiğinde akım veya voltaj Fotovoltaikleri üreten bir PN yarı iletken malzemedir.Semiconductor Optoelectronics .

<span class="mw-page-title-main">LED lamba</span> üzerinden elektirik enerjisi geçirilen diyotların ışık yayması ile çalışan ışık kaynağı

Işık yayan diyot lambası, ışık kaynağı olarak Işık yayan diyotlar (LED'ler) kullanan katı hal lambasıdır. "LED lambası" genellikle Organik ışık yayan diyotlar (OLED) veya polimer ışık yayan diyotlar (PLED) teknolojileri gibi, geleneksel yarı iletken ışık yayan diyotları ifade ederken OLED ve PLED teknolojileri ticari olarak kullanılmaya başladı.

<span class="mw-page-title-main">LED TV</span> arka aydınlatmasında Led teknolojisinin kullanıldığı düz panel ekranlarda uygulanan görüntüleme teknolojisi

LED TV, arka aydınlatmasında Led teknolojisinin kullanıldığı düz panel ekranlarda uygulanan görüntüleme teknolojisidir. LED TV, Light-emitting dioedes (LEDs) olarak da bilinmektedir, aynı zamanda LED televizyonlar için Led arkadan aydınlatmalı LCD televizyonlar da denilmektedir. Plazma ve OLED teknolojilerinden farklı olarak LED televizyonlarının ışık kaynağı kendine özgüdür.

<span class="mw-page-title-main">Fiber optik iletişim</span>

Fiber optik iletişim ya da bilinen adıyla ışıklifi, optik lif boyunca ışık sinyalleri göndererek bilginin bir yerden başka bir yere iletilmesi metodudur. Işık, bilgi taşımak için yönlendirilmiş elektromanyetik taşıyıcı dalga görevi görür. İlk olarak 1970 yılında geliştirilen ışıklifli iletişim sistemleri; telekomünikasyon endüstrisinde devrim yaratmış, bilgi çağının gelişinde önemli bir rol oynamıştır. Elektriksel iletimden avantajlı olması nedeniyle ışıklifleri gelişmiş ülkelerdeki çekirdek ağlarda bakır tellerin iletişimdeki yerini aldı.

Bu Lazer konularının bir listesidir.

<span class="mw-page-title-main">Neon aydınlatma</span>

Neon Aydınlatma elektrikle beslenen, içleri seyreltilmiş neon gazı veya benzeri ile dolu, parlak bir biçimde aydınlatan camdan yapılmış tüp veya ampullerden oluşur.Neon lambaları soğuk katot gaz yük boşaltması tipi lamba sınıfına girer. Bir neon tüpü, iki ucu metal elektrotlarla düşük basınçta mühürlenmiştir ve içi belirli gazlarla doludur. Birkaç bin volt civarındaki yüksek bir elektrik potansiyelin uygulanması, içerideki gazın iyonlaşmasına sebep olur. Daha sonrasında ise gaz, florescence yoluyla farklı renklerde ışıklar saçar. Çıkan ışığın rengi içerideki gazın cinsiyle alakalıdır. Neon ışıklandırma, bahsedilen yolla canlı turuncu bir ışık yayan soygaz Neondan ismini alır. Fakat diğer gazlar ve kimyasallar da farklı renklerde ışık almak amacıyla kullanılmaktadır. Örneğin, hidrojen kırmızı, helyum sarı, karbondioksit beyaz ve cıva mavi ışık verir. Neon tüpleri yazılar yazacak veya resimler oluşturacak biçimde bükülerek üretilirler. Genellikle belirgin, çok renkli, parlak tabelalar veya simgeler oluşturularaki reklam amacıyla kullanılırlar. Bu reklam mentalitesi 1920 ila 1950'ler arasında oldukça popülerdi.

<span class="mw-page-title-main">HP Jornada</span>

HP Jornada Hewlett-Packard tarafından üretilen bir dizi kişisel dijital asistan veya PDA'ydı. Jornada, Palm-boyutlu PC'leri, El bilgisayarı ve Cep bilgisayarı'nı içeren geniş bir ürün yelpazesine sahipti. İlk model 1998'de piyasaya çıkan 820 idi ve sonuncusu 2002'de Compaq ve HP'nin birleştiği zaman sunulan 928 modeliydi. Jornada hattı, daha popüler olan iPAQ modelli PDA'lar tarafından başarıyla sonuçlandı. Tüm Jornada modelleri, Windows CE tabanlı Microsoft İşletim Sistemlerini çalıştırdı.

<span class="mw-page-title-main">HTC Blue Angel</span>

HTC Blue Angel HTC tarafından 2004 yılında üretilmiş bir Windows Mobile aygıtıdır. HTC Harrier adında bir CDMA EV-DO varyantı vardır. Harrier'de Blue Angel gibi Wi-Fi yoktur, her ikisinin de aynı konutu var. O2 Xda IIs, Orange SPV M2000, Dopod 700, Qtek 9090, T-Mobile MDA III, Siemens SX66, i-mate PDA2k, Vodafone VPx, Verizon XV6600 (Harrier), Sprint PPC-6601 (Harrier) adları altında birçok farklı satıcı tarafından satılmaktadır. Tüm farklı model adlarına ve konut görünümüne rağmen, hepsinin benzer donanım özellikleri vardır. Bu akıllı telefonun en önemli özelliklerinden biri dahili klavyedir. Kasanın alt kısmı kayar, QWERTY klavyeyi açığa çıkarır.

<span class="mw-page-title-main">Aktif matriks sıvı kristal ekran</span> düz panel ekran türü

Bir aktif matris sıvı kristal ekran (AMLCD), bir LCD ekranlı yüksek çözünürlüklü TV'ler, bilgisayar monitörü, dizüstü bilgisayarlar, tablet bilgisayarlar ve akıllı telefonlar için tek canlı teknoloji olan düz panel ekran türüdür. Düşük ağırlık, çok iyi görüntü kalitesi, geniş renk gamı ve tepki süresi ile biliniyor.

<span class="mw-page-title-main">QLED</span>

QLED, saf monokromatik kırmızı, yeşil ve mavi ışık üretebilen kuantum noktaları (QD), yarı iletken nanokristalleri kullanan bir görüntü cihazıdır.

<span class="mw-page-title-main">Kızılötesi astronomi</span>

Kızılötesi astronomi, kızılötesi radyasyon ile görüntülenebilen astronomik nesnelerin incelendiği astronomi dalıdır. Kızılötesi ışığın dalga boyu 0.75 ile 300 mikrometre arasında değişir. Kızılötesi, 380 ila 750 nanometre arasında değişen görünür radyasyon ile milimetre altı dalgalar arasında yer alır.

<span class="mw-page-title-main">Bisiklet aydınlatma sistemi</span>

Bisiklet aydınlatması her şeyden önce amacı reflektörlerle birlikte yetersiz ortam aydınlatma koşullarında bisikletin ve sürücüsünün diğer yol kullanıcılarına görünürlüğünü iyileştiren bisikletlere eklenen aydınlatmadır. İkincil amaç kedi gözleri ve trafik işaretleri gibi yansıtıcı malzemeleri aydınlatmaktır. Üçüncü amaç sürücünün önündeki yolu görebilmesi için yolu aydınlatmaktır. İkinci amaçlara hizmet etmek çok daha fazla ışık akısı ve dolayısıyla daha fazla güç gerektirir.

<span class="mw-page-title-main">Oleg Vladimirovich Losev</span> Russian scientist and inventor

Oleg Vladimirovich Losev yarı iletken bağlantılar ve ışık yayan diyot (LED) alanında önemli keşifler yapan bir Rus bilim insanı ve mucitidir.