İçeriğe atla

Küresel üçgen üzerinde Legendre teoremi

Küresel (Riemann geometrisi) ve düzlemsel (Öklid geometrisi) iki üçgen

Geometride, Fransız matematikçi Adrien-Marie Legendre adını taşıyan küresel üçgenler üzerinde Legendre teoremi şu şekilde ifade edilir:

, küçük kenarları olan birim küre üzerindeki küresel bir üçgen olsun. ise aynı kenarlı düzlemsel üçgen olsun. Buna göre, küresel üçgenin açıları, düzlemsel üçgenin karşılık gelen açılarını küresel fazlalığın yaklaşık üçte biri kadar aşar (küresel fazlalık, küresel üçgendeki üç açının toplamının, düzlemsel üçgenin iç açıları toplamı olan π değerini aştığı miktardır).

Teorem, yaklaşık 1800'den yirminci yüzyılın ortalarına kadar geleneksel (GPS ve bilgisayar öncesi) jeodezik araştırmaların sonuçlarının hesaplanmasında ağır sayısal hesaplamaları basitleştirmekte çok önemliydi.

Teorem, metre (Delambre 1798) tanımında Fransız meridyen yayının ölçüm raporunun tamamlanmasına bir kanıt (1798) sağlayan Legendre (1787) tarafından ifade edilmiştir. Legendre, kendisine atfedilmesine rağmen teoremin yaratıcısı olduğunu iddia etmemektedir. Tropfke (1903), yöntemin o sırada araştırmacılar tarafından ortak kullanımda olduğunu ve 1740 gibi erken bir tarihte La Condamine tarafından Peru meridyen yayının hesaplanması için kullanılmış olabileceğini savunuyor.

Girard teoremi bir E üçgeninin küresel fazlalığının, alanı 'ya eşit olduğunu ve dolayısıyla Legendre teoreminin aşağıdaki şekilde yazılabileceğini ifade eder:

Küçük üçgenlerin fazlalığı veya alanı çok küçüktür. Örneğin, 6371 km yarıçaplı küresel bir Dünya üzerinde kenarları 60 km olan bir eşkenar küresel üçgen düşünün; kenar, veya yaklaşık 10−2 radyan (merkezde 0,57°'lik bir açıya karşılık gelen) bir açısal mesafeye karşılık gelir. Böyle küçük bir üçgenin alanı da aynı kenar ile düz bir eşkenar üçgen olduğu yaklaşılır: radyan yani 8,9″ 'ye karşılık gelir.

Üçgenlerin kenarları 180 km'yi aştığında fazlalık yaklaşık 80″ olup, alanlar arasındaki ilişkiler ve açı farklılıkları, 0,01″ 'den fazla olmamak kaydıyla, kenarlarda dördüncü terim ile düzeltilmelidir:

( düzlemsel üçgenin alanıdır.) Bu sonuç Buzengeiger (1818) tarafından kanıtlanmıştır — genişletilmiş bir kanıt Osborne (2013) (Ek D13)'de bulunabilir. Diğer sonuçlar Nádeník (2004) tarafından araştırılmıştır.

Eğer gerçek uzunlukları, (küresel bir yarıçap yerine) köşelerin medyan enleminde eğriliğin ana yarıçapının çarpımının kareköküne bölerek hesaplanırsa (bkz. Osborne (2013) Bölüm 5) teorem elipsoite genişletilbilir. Gauss (1828, Art. 26-28) daha kesin formüller sağlamıştır.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">İkinci dereceden denklemler</span>

İkinci dereceden denklemler, derecesi 2 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Üçgen dalga</span>

Üçgen dalga, ismini üçgen şeklinden alan bir sinüzoidal olmayan dalga şeklidir. Üçgen dalga periyodik, parçalı lineer, sürekli gerçel bir fonksiyondur.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

<span class="mw-page-title-main">Heron formülü</span> bir üçgenin alanını hesaplamak için formül

Heron formülü, kenar uzunlukları bilinen bir üçgenin alanını hesaplamaya yarayan geometri formülüdür. Yunan matematikçi Heron tarafından bulunmuştur.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Kütleçekimsel potansiyel</span>

Klasik mekanikte, bir yerdeki yerçekimi potansiyeli iş bölü birim ağırlığa eşittir. Sabit bir referans noktası için bir nesnenin yerçekimi kuvveti tarafından oluşan hareketidir. Yük rolü oynayan bir ağırlığın elektrik potansiyeline benzerdir. Referans noktasında potansiyel herhangi bir ağırlığın sonsuz uzaklıkta toplanmasından dolayı 0'dır ve sonlu bir uzunlukta negatif bir potansiyelle sonuçlanır. Matematikte, yerçekimi potansiyeli ayrıca Newton potansiyeli olarak bilinir ve potansiyel teorinin çalışmasının temelidir.

<span class="mw-page-title-main">Küresel üçgen</span>

Küresel üçgen, bir kürenin yüzeyinde, üç köşede çiftler halinde kesişen üç büyük dairesel yay tarafından oluşturulan bir şekildir. Riemann teoremi ile açıklanır. Küresel üçgen, düzlemsel üçgenin küresel analogudur ve bazen Euler üçgeni olarak adlandırılır. Küresel üçgenin açıları , ve ve küresel üçgenin oturduğu kürenin yarıçapı olsun. Küresel üçgenin yüzey alanı ;

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Verlet entegrasyonu, Newton'un hareket denklemlerini uygulamak için kullanılan nümerik yöntemlerden biridir. Genellikle Moleküler dinamik simülasyonlarında parçacıkların bir sonraki zaman dilimindeki konumlarını belirlemek için kullanılır. Hız hesaplaması yerine sadece o anki konum, önceki konum ve o anki ivmeyi kullanan bu yöntem Euler yönteminden daha isabetlidir ve gerektirdiği işlem sayısı pek farklı değildir. İlk defa 1791 yılında Delambre tarafından kullanılmıştır ve o zamandan beri çok kez yeniden keşfedilmiştir: 1909'da Cowell and Crommelin tarafından Halley kuyruklu yıldızı'nın yörüngesini hesaplamak için veya 1907'de Carl Størmer tarafından manyetik alandaki elektrik yüklü parçacıkların yörüngesini incelemek için kullanılması gibi. Daha sonra 1960'larda Loup Verlet tarafından moleküler dinamikte kullanıldı.

<span class="mw-page-title-main">Mollweide formülü</span> bir üçgenin kenar uzunluklarını ve açılarını ilişkilendiren iki denklem

Trigonometride Mollweide formülü, bir üçgendeki kenarlar ve açılar arasındaki bir çift ilişkidir.