İçeriğe atla

Kümülant

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

n tane kümülant κn bir 'kümülant üreten fonksiyon tarafından belirlenir; bu fonksiyon g(t) olarak şöyle ifade edilebilir:

Bu fonksiyonun türevleri var olduğu kabul edilirse, kümülantlar g(t) fonksiyonunun (sıfırda) türevleri ile şöyle verilir:

κ1 = μ = g' (0),
κ2 = σ² = g' '(0),
κn = g(n) (0).

κn kümülantlari verilmiş olan bir olasılık dağılımı Edgeworth serileri açılımı suretiyle yaklaşık olarak bulunabilir.

Tarihçe

Kümülant kavramı 1889'da Danimarkalı matematikçi ve istatistikçi Thorvald N. Thiele (1838 - 1910) tarafından yarı-değişmezler adı altında ortaya atılmıştır. Kümülant adı ilk defa İngiliz istatistikçisi Ronald Fisher tarafından ortaya atılıp sonradan bu kavram Fisher ve İngiliz istatistikçi Wishart tarafından geliştirilmiştir.[1]

Momentler ve kümülantlar

Bir olasılık dağılımı için kümülantlar o dağılımın momentleri ile yakından ilişkilidir. Kümülant kavramının geliştirilmesi ve bunların momentler kavramına pratik kullanımda tercih edilmesi nedeni bağımsız iki rassal değişken X ve Y için şu ifadenin bulunmasına bağlıdır;

Böylece her kümülant daha önce toplam olarak elde edilmiş karşıt kümülantların toplamının bir toplamı olur.

Moment üreten fonksiyon şöyle verilir:

Böylece kümülant üreten fonksiyon moment üreten fonksiyonun logaritmasıdır.

Birinci kümülant beklenen değer; ikinci kümülant varyans ve ikinci ve üçüncü kümülant merkezsel momentler olur. Ancak daha yüksek derecede kümülantlar ne momentler ne de merkezsel momentlere karşıttırlar.

Kümülantlar momentlere şu (yineleme) formülü ile bağlıdırlar:

ninci moment μ′n ilk n kümülant ile kurulmuş ninci derece bir polinomdur; yani (Bunun katsayıları hep pozitif olur ve Faà di Bruno'nin formülünde bulunan katsayılardır.)

Merkezsel momentler olan μn (DIKKAT μ′n DEĞIL) ile kümülant bağlılığı şöyledir:

Karakteristik fonksiyon ve kümülantlar

Bazı istatistikçiler kümülant üreten fonksiyonu başka bir yol kullanarak karakteristik fonksiyonlar yoluyla şöyle tanımlamayı tercih ederler.[2][3]

Bu türlü tanımlamanın avantajı eğer daha yüksek derecelerde momentler bulunmasa bile uygun kümülantlarin elde edilmesini sağlamasıdır.

Ayrıca bakınız

Kaynakça

  1. ^ Fisher 1929'da ilk defa Harold Hotellinge yazdığı bir mektupta bu kavramı kumulatif moment fonksiyonu adi ile kullanmıştır. İlk kümülant adı olarak kullanılması R. Fisher ve J.Wishart (1931) "The derivation of the pattern formulae of two-way partitions from those of simpler patterns", Proceedings of the London Mathematical Society, 2. Seri C. 33 say. 195-208 makalesindedir.
  2. ^ Kendall, M.G., Stuart, A. (1969) The Advanced Theory of Statistics, Volume 1 (3rd Edition). Griffin, London. (Section 3.12)
  3. ^ Lukacs, E. (1970) Characteristic Functions (2nd Edition). Griffin, London. (Page 27)

Dış bağlantılar

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Logistik dağılım</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim kollarında, logistik dağılım bir sürekli olasılık dağılımdır. Logistik dağılımın yığmalı dağılım fonksiyon bir logistik fonksiyondur ve bu fonksiyon logistik regresyon ve ileriye-geçiş-sağlayan sinirsel ağlar konularında da rol oynar.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Çarpıklık</span>

Çarpıklık olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Skellam dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Skellam dağılımı bir ayrık olasılık dağılım tipidir. Skellam dağılımı iki tane beklenen değerleri ve olan Poisson dağılımı gösteren rassal değişken ve arasında bulunan fark olan nin gösterdiği olasılık dağılımdır.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

İstatistik bilim dalında D'Agostino'nun K2 sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. Örneklem basıklık ve çarpıklık ölçülerinin dönüşümlerinden elde edilmiştir. K2 istatistiği şöyle elde edilir:

İstatistik bilim dalında, Jarque-Bera sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. İlk defa bu sınamayi ortaya atan ekonometrici A.K.Bera ve C.M.Jarque adları ile anılmaktadır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa

μk := E[(X - E[X])k]

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

Çarpım fonksiyonu, sayılar teorisinde bir f(n) aritmetik fonksiyonudur. Bu fonksiyon, tanım kümesindeki her x ve y çifti için çarpma işlemini koruyan fonksiyondur.