İçeriğe atla

Kutup (karmaşık analiz)

Gama fonksiyonun mutlak değeri. Bu, fonksiyonun kutuplarda sonsuz olduğunu gösterir (solda). Sağda, gama fonksiyonun kutupları yoktur,fonksiyoın sadece hızlı bir şekilde artmaktadır.

Karmaşık analizde kutup ya da doğru bir söylemle bir meromorf fonksiyonun kutbu, 1/zn 'nin z = 0 noktasındaki tekilliği gibi davranan matematiksel bir tekilliktir. Bu özellikle şu anlama gelir: Bir f(z) fonksiyonun z = a noktasındaki kutbu, z noktası a noktasına yaklaştıkça f(z)'yi sonsuza düzgün bir şekilde yaklaştıran noktadır.

Tanım

U, karmaşık düzlem C 'nin açık bir altkümesi olsun. a noktası U 'nun bir öğesi olsun ve f : U - {a} → C tanım bölgesinde holomorf bir fonksiyon olsun. U - {a} 'daki her z noktası için

ifadesinin sağlandığı g : UC fonksiyonu ve negatif olmayan bir n tam sayısı varsa, o zaman a 'ya f 'nin bir kutup noktası adı verilir. Yukarıdaki şartı sağlayan en küçük n sayısına ise kutbun mertebesi denilir. Mertebesi 1 olan bir kutba basit kutup denirken, mertebesi 0 olan bir kutba ise kaldırılabilir tekillik adı verilir.

Yukarıdaki çeşitli denk tariflerden ise şunlar çıkartılabilir:

Eğer n, a noktasındaki kutbun mertebesiyse, o zaman muhakkak yukarıdaki ifadede yer alan g fonksiyonu için g(a) ≠ 0 'dır. Böylece, a noktasının etrafındaki açık bir komşulukta holomorf olan ve a 'da n inci mertebeden sıfır olan bir h fonksiyonu için

diyebiliriz. Yani, matematik kesinlik bir kenera bırakılıp tarif edilecek olursa, kutuplar holomorf fonksiyonların sıfırlarının terslerinde (kesir olarak) olur.

Ayrıca, g 'nin holomorf olması yoluyla, f de

şeklinde ifade edilebilir. Bu sonlu ana kısmı olan bir Laurent serisidir. U üzerindeki ∑k ≥ 0ak (z - a)k holomorf fonksiyonuna f 'nin düzenli kısmı denir. Böylece, a noktasının f 'nin n mertebeli bir kutup noktası olması ancak ve ancak f 'nin a noktası etrafındaki Laurent serisi açılımındaki derecesi -n 'den küçük olan terimler yoksa ve -n dereceli terim sıfırdan farklıysa mümkündür.

Notlar

Eğer f 'nin birinci türevinin a noktasında basit bir kutbu varsa, o zaman a 'ya f 'nin dallanma noktası adı verilir. (Tersi durum doğru olmak zorunda değildir).

Kutup veya dallanma noktası olmayan kaldırılamaz bir tekilliğe esaslı tekillik adı verilir.

Bazı izole edilmiş noktalar dışında holomorf olan ve tekillikleri sadece kutuplar olan karmaşık bir fonksiyona meromorf fonksiyon adı verilir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Matematiğin bir alanı olan karmaşık analizde, karmaşık değişkenli ve karmaşık değerler alan bir f fonksiyonu

Karmaşık analizde, tam fonksiyon veya başka bir deyişle integral fonksiyonu, karmaşık düzlemin tümünde holomorf olan karmaşık değerli bir fonksiyondur. Tam fonksiyonların tipik örnekleri polinomlar, üstel fonksiyon ve bunların toplamları, çarpımları ve bileşkeleridir. Her tam fonksiyon tıkız kümeler üzerinde düzgün bir şekilde yakınsayan kuvvet serileri ile temsil edilebilir. Doğal logaritma ya da karekök fonksiyonu tam bir fonksiyona uzatılamaz.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Esaslı tekillik</span>

Karmaşık analizde, esaslı tekillik veya daha düzgün bir söylenişle bir fonksiyonun esaslı tekilliği, fonksiyonun çok uç bir davranış gösterdiği katı bir tekilliktir.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

Karmaşık analizde Charles Émile Picard'ın ismine atfedilen Picard teoremi analitik bir fonksiyonun görüntü kümesiyle ilişkin ayrı ayrı ama yine de birbirine bağlı iki teoremdir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Korunmalı tekillik</span>

Matematiğin bir dalı olan karmaşık analizde, korunmalı tekillik kendisine yakın başka bir tekilliğin olmadığı tekillik çeşididir.

Karmaşık analizde, bir kaldırılabilir tekillik veya daha düzgün bir söylemle, bir holomorf fonksiyonun kaldırılabilir tekilliği, fonksiyonun görünüşte holomorf olmadığı; ancak daha yakın bir incelemeden sonra fonksiyonun tanım kümesinin bu tekilliği de içerecek şekilde genişletilebileceği bir noktadır.

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

Karmaşık analizde kalıntı veya rezidü, bir meromorf fonksiyonun bir tekillik etrafındaki çizgi integrallerinin davranışını açıklayan bir karmaşık sayıdır. Kalıntılar oldukça kolay bir şekilde hesaplanabilir ve bilindiklerinde kalıntı teoremi sayesinde çok karışık gerçel integrallerin belirlenmesi yolunu açarlar.

<span class="mw-page-title-main">Meromorf fonksiyon</span>

Meromorf fonksiyon, özellikle karmaşık analizde, bir fonksiyon çeşidi. Daha açık bir ifadeyle, meromorf fonksiyon, karmaşık düzlemin açık bir D kümesi üzerinde fonksiyonun kutup noktalarından oluşan belli bir korunmalı noktalar kümesi haricinde D 'nin geriye kalan diğer noktalarının tümünde holomorf olan fonksiyondur. Meromorf kelimesi Yunanca "kısım", "parça" anlamına gelen “meros” ve "tüm", "bütün" anlamına gelen “holos” kelimelerinin tezat bir birleşiminden ortaya çıkmış bir kelimedir.

Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.

Matematiğin bir alt dalı olan karmaşık analizde Hurwitz teoremi, matematikçi Adolf Hurwitz'in ispatladığı ve bu yüzden onun ismini almış önemli bir sonuçtur. Genel bir şekilde ifade etmek gerekirse, Hurwitz teoremi karmaşık düzlemdeki bir bölge üzerinde tanımlı bir holomorf fonksiyonlar dizisinin sıfırları ile bu dizinin limiti olan fonksiyonun sıfırlarını ilişkilendirir.

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.

Matematikte, çok değişkenli karmaşık analiz ya da çok boyutlu karmaşık analiz, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisi; yani, birden fazla karmaşık değişkenli fonksiyonların teorisidir.