İçeriğe atla

Kukla değişken tuzağı

Kukla değişken tuzağı çoklu regresyon analizinde bir m kategorili bir kalitatif etkinin m tane 0-1 değeri alan açıklayıcı kukla değişken ile ifade edilmesi dolayısıyla ortaya çıkar. Bu tuzağa düşmemek için m-1 sayıda 0-1 değeri alan açıklayıcı kukla değişken kullanmak yeterli ve gereklidir.

Birden fazla karakter veya durum tek kukla değişken ile gösterilmeyip her bir karakter bir kukla değişken ile ifade edilirse, çoklu doğrusal bağlılık (multicollinearity) problemi ortaya çıkar ve parametreler tahmin edilemez. Bu durum "kukla değişken tuzağı" olarak adlandırılır.

Kukla değişken tuzağı oluşmaması için sabit parametreli modelde kukla değişken ile ifade edilecek kategorik karakter veya durum sayısından bir eksik sayıda kukla değişken kullanılmalıdır.

Örneğin: Dört mevsimin etkisi incelenmekte iken, 3 tane kukla değişken kullanmak yeterli ve gereklidir. Bunlar M1, M2 ve M3 olursa, değişik mevsimlerde bu 3 kukla değişken şu veri değerlerini alırlar:

M1=1 M2=0 M3=0 - İlkbahar
M1=0 M2=1 M3=0 - Yaz
M1=0 M2=0 M3=1 - Sonbahar
M1=0 M2=0 M3=0 - Kış

Eğer dört mevsim olduğu için dört açıklayıcı değişken kullanılıp, kış değişkeni olarak kışın 1 diğer mevsimlerde 0 değeri alan M4 değişkeni kullanılırsa, bu bir "kukla değişken tuzağı"dır.

Kaynakça

Ayrıca bakınız

Dış bağlantılar

  • Gujarati, Damodar (çev. Ümit Senesen, Gülay Günlük Senesen) (2008) Temel Ekonometri, Literatur Yayınları ISBN 975-7860-99-9.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ekonometri</span>

Ekonometri İki veya daha fazla verinin, birbirleri arasındaki ilişkiyi ve bu ilişkiden yola çıkarak, matematik, istatistik ve bilgisayar bilimi aracılığıyla ekonomik ilişkilerin ampirik bir biçimde değerlendirilerek, bu veriler arasındaki ilişkiyi inceleyen bilim dalıdır. Daha açık olmak gerekirse, "sonucu uygun metodlarla ilişkilendirilmiş, teori ve gözlemin eşzamanlı gelişimi tabanlı mevcut ekonomik olgunun nicel çözümlemesidir." Bir ekonomiye giriş ders kitabı ekonometriyi: "dağlarca verinin arasından basit ilişkileri çıkarmak için titizlikle araştırmak" olarak açıklamıştır. "Ekonometri" terimi ilk olarak Polonyalı ekonomist Pawel Ciompa tarafından 1910 yılında kullanılmıştır. Bugünkü kullanım şekline getiren ise Ragnar Frisch'dir. Günümüzde daha güçlü bilgisayar yazılımların varlığıyla ekonometrik analizlerin gücü artmıştır.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Otokorelasyon</span>

Otokorelasyon ya da öz ilinti, bir sinyalin farklı zamanlardaki değerleri arasındaki korelasyonudur. Başka bir deyişle, gözlemlenen değerler arasındaki benzerliğin, zamansal gecikmenin bir fonksiyonu olarak ifadesidir. Otokorelasyon analizi tekrar eden örüntülerin tanınması, bir sinyalin kayıp temel frekansının tespit edilmesi gibi amaçlar için kullanılan bir matematiksel araçtır. Sinyal işlemede fonksiyonların ya da dizilerin analizi için sıkça kullanılır.

<span class="mw-page-title-main">Kış</span>

Kış, Dünya'nın kutup bölgeleri ile Ilıman kuşak bölgelerinde yılın en soğuk mevsimidir. Çoğunlukla tropikal kuşakta oluşmaz. Her yıl, sonbahardan sonra ve ilkbahardan önce gelir. Kış, Dünya'nın eksen eğikliği sebebiyle her bir yarım küresinin Güneş'ten uzaklaşması sayesinde oluşur. Çeşitli kültürler, farklı tarihleri kışın başlangıcı olarak tanımlar ve bazıları hava durumuna dayalı bir tanım kullanırlar. Kuzey yarımkürede kışken, Güney yarımkürede yazdır ya da tam tersidir. Çoğu bölgede, kış dondurucu soğuklar ve karla ilişkilendirilir. Kış gündönümü anı, Güneş'in Kuzey veya Güney Kutbu'na göre yüksekliğinin en negatif değerinde olduğu andır. Bu durumun görüldüğü gün, en kısa gündüzü ve en uzun gecesi olan gündür ve kış gündönümünden sonraki günlerde, geceler kısalır ve gündüzler uzar. Kutup bölgelerinin dışındaki en erken gün batımı ve en geç gün doğumu tarihleri, kış gündönümü tarihinden farklıdır ve bunlar, yıl boyunca Dünya'nın eliptik yörüngesinin neden olduğu, güneş günündeki değişiklik nedeniyle enlemlere bağlıdır.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Negatif binom dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

<span class="mw-page-title-main">Olasılık kütle fonksiyonu</span>

Olasılık kuramı bilim dalında bir olasılık kütle fonksiyonu bir ayrık rassal değişkenin olasılığının tıpatıp belli bir değere eşit olduğunu gösteren bir fonksiyondur. Olasılık kütle fonksiyonu, olasılık yoğunluk fonksiyonundan farklıdır; çünkü olasılık yoğunluk fonksiyonu yalnızca sürekli rassal değişkenler için tanımlanmış olup doğrudan doğruya olasılık değerini vermezler. Olasılık yoğunluk fonksiyonunun bir belli değer aralığı için integrali alınırsa bu rassal değişkenin belirlenen değer aralığı için olasılığını verir.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

<span class="mw-page-title-main">Doğrusal olmayan regresyon</span>

Doğrusal olmayan regresyon, istatistik bilimde gözlemi yapılan verilerin bir veya birden fazla bağımsız değişkenin model parametrelerinin doğrusal olmayan bileşiği olan ve bir veya daha çok sayıda bağımsız değişken ihtiva eden bir fonksiyonla modelleştirilmesini içeren bir regresyon (bağlanım) analizi türüdür. Veriler arka-arkaya yapılan yaklaşımlarla kurulan modele uydurularak çözümleme yapılır.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Boolean Formülü içerisinde; boolean değişkenleri, sabitler {0,1} ve işlemler {, , } içeren formüllerdir. Bu formüller, (bütün hepsi) ve belirleyicilerinin eklenmesiyle daha genel bir yapıya sokulabilir. ifadesi bütün x değişkenleri için Q formülü doğrudur anlamı taşımaktadır. Benzer bir şekilde; ifadesi ise bazı x değişkenleri için Q formülü doğrudur anlamı taşımaktadır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Granger nedensellik sınaması, bir zaman serisinin başka bir zaman serisini tahmininde kullanışlı olup olmadığının bir istatistiksel hipotez sınamasıdır. Normalde, bağlanımlar, "sadece" ilintileri yansıtırlar, ancak Ekonomi Nobel Ödülünü kazanan Clive Granger, belli bir sınamalar kümesinin nedensellikle ilgili bir şeyler ortaya çıkardığını savunmuştur.

<span class="mw-page-title-main">Parametre</span> belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik

Parametre belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik. Parametre, sistemi tanımlarken veya performansını, durumunu değerlendirirken yararlı veya kritik olan bir sistem unsurudur.