Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.
Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.
Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:
- Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
- Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.
Fonksiyon, matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Fonksiyon, 17. yüzyılda matematiğin kavramlarından biri olmuştur. Fizik, mühendislik, mimarlık ve birçok alanda kullanılmaktadır. Galile, Kepler ve Newton hareketlerin araştırılmasında, zaman ve mesafe arasındaki durumu incelemek için fonksiyonlardan faydalanmıştır. Dört işlemden sonra gelen bir işlem türüdür.
Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.
Matematikte, mutlak değer bir gerçek sayının işaretsiz değerini verir. Örneğin, 3; hem 3'ün hem de -3'ün mutlak değeridir. Bilgisayarlarda ise, bu ifade etmek için kullanılan matematiksel fonksiyon genelde abs(...)'dir
Lie işlemcisi, matematikte ve fizikte geniş bir kullanım alanı bulur. Bir cismin üzerine bu dönüşüm ile tanımlanan yöney (vektör) uzayı Lie cebri olarak adlandırılır. Adını Sophus Lie'den almıştır.
Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:
Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.
Matematiksel safsata, aslında ilk bakışta ispatlanmış gibi görünmesine rağmen incelendiğinde hatalı şekilde ispatlandığı ve aslında doğru olmadığı görülen yanılgılardır.
Cauchy-Schwarz eşitsizliği matematikte önemli bir eşitsizliktir. Özellikle lineer cebir, analiz, istatistik ve olasılık kuramı'nda bu eşitsizlik yoğun bir şekilde kullanılmaktadır.
Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.
Diofantos denklemi diğer bir adıyla Diophantine denklemleri adını M.S. 3. yüzyılda yaşadığı tahmin edilen Antik Yunan matematikçilerden Diofantos'dan alan değişkenleri ve katsayıları tam sayılar olan denklemlerdir. Diofantos Arithmetika adlı sadece 6 cildi günümüze ulaşan çalışmasında 130 denkleme ve bunların çözümlerine yer vermiştir.
Matematik'te, sonsuzküçük dönüşüm limiti sıfıra yaklaşan çok küçük bir dönüşümdür. Örneğin üç-boyutlu uzayda bir katı cismin sonsuzküçük dönüşünden bahsedilebilir. Geleneksel olarak 3×3'lük bir A çarpık-simetrik matrisi ile gösterilir. Bu tam anlamıyla bir dönüş matrisi değildir; ama bir ε değişkeninin çok küçük gerçel değerleri için
Matematik'te bir Lie eşcebri ikili yapıda bir Lie cebridir.
Matematikte, bir Casimir ögesi, merkez bir Lie cebirinin evrensel kapsayıcı cebir'inin merkezinin bir seçkin ögesidir. Bir prototipik örnek kare açısal momentum operatörü'dür, Bu üç boyutlu döndürme grubu'nun bir Casimir ögesidir.
Bu bir Sophus Lie adıyla çalışmalar listesi dir.Sophus Lie ,bir matematikçi,aşağıda listelenen şeyler(ve konularda) tümü eponimdir
- 26955 Lie
- Abel Lie cebiri
- Bir Lie cebrinin ek temsili
- Bir Lie grubunun ek temsili
- Afin Lie cebiri
- Anyonik Lie cebiri
- Lie grupları ve gösterimlerinin atlası
- Caratheodory-Jacobi-Lie teoremi
- Kompakt Lie cebiri
- En
- Serbest Lie cebiri
- Dereceli Lie cebiri
- Lie tipi grup
- Bir Lie cebirinin indisi
- Lie cebiri demeti
- Lie cebri kohomolojisi
- Lie cebiri gösterimi
- Lie cebiri
- Lie cebroid
- Lie bicebri
- Lie Vektör alanları
- Lie eşcebri
- Lie konformal cebiri
- Lie türevi
- Lie grubu ayrışması
- Lie grubu homomorfizması
- Lie grubu
- Lie grupoid
- Lie noktası simetri
- Lie çarpım formülü
- Lie halkası
- Lie küre geometrisi
- Lie alt grubu
- Lie süpercebiri
- Lie teorisi
- Lie * cebiri
- Lie Kolchin teoremi
- Lie-Palais teoremi
- Lie üçüncü teoremi
- Yerel Lie grubu
- Malcev Lie cebiri
- Modüler Lie cebiri
- Canavar Lie cebiri
- Sıfır üssü Lie cebiri
- Bir Lie cebirinin sıfırkökü
- Simetrik Lie cebiri
- Parabolik Lie cebiri
- Poisson Lie grubu
- Ön-Lie cebiri
- Kuadratik Lie cebiri
- Kuazi-Frobenius Lie cebiri
- Kuazi-Lie cebiri
- Bir Lie cebirinin kökü
- Gerçek form(Lie teorisi)
- İndirgemeli Lie cebiri
- Bir Lie cebir düzenli elemanı
- Bir Lie grubunun gösterimi
- Bir Lie supercebri arasında gösterimi
- Kısıtlanmış Lie cebiri
- Yarı-basit Lie cebiri kök sistemi
- Yarıbasit Lie cebiri
- Basit Lie grubu
- Çözülebilir Lie cebiri
- Özel doğrusal Lie cebiri
- Özel dik Lie cebiri
- Bölünmüş Lie cebiri
- Simetrik Lie grubu
- Simplektik Lie cebiri
- Lie gruplarının tablosu
- Tanjant Lie grubu
- Tate Lie cebiri
- Lie gruplarının teorisi
- Toral Lie cebiri