İçeriğe atla

Kristal

Kuvars kristali

Kristal, billur ya da kesme cam, kimyadaki katı haldeki bir elementin veya bileşiğin, molekül, atom veya iyon yığınlarının (paketinin) kesin geometrik bir yapı göstermesidir.

Bir kristal veya kristal katı, bileşenleri her yöne uzanan bir kristal kafes oluşturan, yüksek dereceli bir mikroskobik yapıda düzenlenmiş katı bir malzemedir. Makroskopik tek kristaller genellikle spesifik, karakteristik yönelimlere sahip düz yüzlerden oluşan geometrik şekilleri ile tanımlanabilir.

Kuvars kristali

Kristallerin ve kristal oluşumunun bilimsel çalışması kristalografi olarak bilinir. Kristal büyüme mekanizmaları yoluyla kristal oluşum sürecine kristalleşme veya katılaşma denir.Büyük kristallerin örnekleri arasında kar taneleri, elmaslar ve sofra tuzu bulunur.

Çoğu inorganik katılar kristaller değil, polikristaller, yani tek bir katı halinde birbirine kaynaşmış birçok mikroskobik kristallerdir. Polikristal örnekleri çoğu metal, Kaya, seramik ve buz içerir. Katıların üçüncü bir kategorisi, atomların periyodik bir yapıya sahip olmadığı amorf katılardır. Amorf katıların örnekleri arasında cam, Balmumu ve birçok plastik bulunur.

Yapısı

Kristal atomları periyodik düzenlemede katıdır ve mikroskobik düzenlemeye dayanır. Tüm küçük kristaller atomların periyodik bir düzenlemeye sahip gerçek kristaldir, ancak tüm polikristal atomların periyodik bir düzenlemeye sahip değildir, çünkü periyodik desen tane sınırlarında kırılır. Makroskopik inorganik katıların çoğu, neredeyse tüm metaller, seramikler, buzlar, kayalar vb. dahil olmak üzere polikristaldir.[1]

Mikroskobik kristal yapı

Amorf, cam gibi olan katılara denir ve bunların belli bir periyodu yoktur. Birim hücreler kristali oluşturmak için üç boyutlu uzayda istiflenir. Kristalografik uzay grupları olarak adlandırılan 219 Olası kristal simetrisi vardır.

Mikroskobik kristal 1

Yüzeyi ve şekli

Kristal yüzeyleri, keskin açılara sahip düz yüzeylerden oluşur. Şeklinin böyle olması zorunlu değildir ancak mikroskobik inceleme açısından kolaydır. Euhedral kristaller, belirgin, iyi şekillendirilmiş düz yüzlere sahip olanlardır. Anhedral kristaller, genellikle kristal polikristalin bir katıda bir tane olduğu için yapmaz.Bir kristal büyüdükçe, yeni atomlar yüzeyin daha pürüzlü ve daha az kararlı kısımlarına kolayca bağlanır, ancak düz, kararlı yüzeylere daha zor bağlanır.[2]

Kristal yüzeylerini ölçmek ve kristal simetrisini anlamak için Kristalografi kullanılır. Kristal yapısı ağ ve kristalin oluşturduğu koşullarca ayarlanır.

Doğada oluşumu

Kayalar

Dünyadaki en büyük kristal konsantrasyonları hacim ve ağırlık olarak ana kayanın bir parçasıdır. Kayalarda bulunan kristallerin boyutları genellikle bir milimetre ile birkaç santimetre arasında değişir. Fakat son derece büyük kristalleri görmekte mümkündür.

Dünyanın doğal olarak oluşan, bilinen en büyük kristali 1999 yılında Madagaskar, Malakialina'da görülmüş olan 18 m uzunluğunda, 3.5 m çapında ve 380.000 kg ağırlığındaki beril kristalidir.[3]

Buz kristali

Bazı kristaller magmatik ve metamorfik süreçlerle oluşmuş ve büyük kristal kaya kütlelerinin kökenini oluşturmuştur. Magmatik kayaçların büyük bir kısmı erimiş magmadan oluşur ve kristalleşme derecesi öncelikle katılaştıkları koşullara göre belirlenir. Granit gibi yavaş ve büyük baskı altında soğutulan kayaçlar, tamamen kristalleşmiştir. Ancak yüzeye dökelen birçok lav türünün ve çok hızlı bir şekilde soğutulması nedeniyle amorf veya camsı maddelerin yaygınlığı artmıştır. Diğer kristal kayaçlar, mermerler, mika-şistler ve kuvarsitler gibi metamorfik kayaçlar yeniden kristalleştirilebilirler. Kireçtaşı, şeyl ve kumtaşı gibi ilk fragmental kayalar ise erimezler ve tamamen çözelti içinde değillerdir. Ancak metamorfizmanın yüksek sıcaklık ve basınç koşulları ile orijinal yapıları silinerek katı halde kristalleşmeye başlarlar.[4]

Kalsit kristalli fosil kabuk

Diğer kaya kristalleri, drüsleri veya kuvars damarlarını oluşturmak için sıvılardan, genellikle sulu çözeltilerden oluşmuştur. Halit (mineral), alçı ve bazı kireçtaşları gibi evaporitler, çoğunlukla kurak iklimlerde buharlaşma nedeniyle sulu çözeltiden meydana gelmiştir.

Buz

Dünya'da kar, deniz buzu ve buzullar şeklindeki yaygın kristaller polikristal yapıdadır.[5] Tek bir kar tanesi tek bir kristal veya kristallerin bir koleksiyonudur.[6] Buz küpü bir polikristaldir.[7]

Organijenik Kristaller

Birçok canlı organizma ve omurgalılar yumuşak veya hidroksilapatit durumunda olan kalsit ve aragonit gibi kristaller üretebilir.

Çok biçimlilik

Bir Atom Grubu birden çok şekilde katılaşabilir. Polimorfizm, bir katının birden fazla kristal formunda var olma kabiliyetidir.Farklı polimorflara genellikle farklı fazlar denir fakat aynı atomlar farklı oluşum da gösterebilir. Bir madde kristal oluşturabiliyorsa polikristal de oluşturabilir.[8]

Dikey soğutma kristalizatörü.

Polimorfizm allotropi saf kimyasal maddeler için kullanılır.

Polimorflar aynı atomlara sahip olmasına rağmen farklı özelliklere sahiptir. Poliamorfizm, aynı atomların birden fazla amorf katı formda var olabilecek benzer bir olgudur.

Kristalleşme

Kristalleşme karmaşık yapıya sahiptir çünkü birden fazla forma dönüşebilir. Belki de çeşitli olası fazlar, stokiyometriler, safsızlıklar, kusurlar ve alışkanlıklar ile tek bir kristal oluşturabilir veya tanelerinin büyüklüğü, düzenlemesi, oryantasyonu ve fazı için çeşitli olasılıklara sahip bir polikristal oluşturabilir. Maddenin katı olmasındaki son şekle, yapı basınç ve sıcaklık gibi unsurlar karar verir.[9]

Büyük tek kristaller üretmek için farklı endüstriyel işlemler uygulanır. Bu kristaller anca jeolojik süreçler içerisinde oluşur. Kristal oluşumunu sağlayan etkenler olduğu gibi, oluşumu engelleyen etkenler de vardır ve bunlar organizmalardır.

Kusurlar, safsızlıklar ve eşleştirme

İki tip kristalografik kusur görülmektedir. Sağ üst: kenar çıkığı. Sağ alt: vida çıkığı.

Mükemmel bir şekilde tekrar eden desenlere sahip olan kristtaller en ideal kristallerdir. Ancak bazı kristallerde kristalin deseninin kesildiği çeşitli yerler bulunur. Bu yerleri kristalografik kusurlar olarak adlandırırız. Kristalografik kusurların, türleri ve yapılarını ele aldığımızda malzemelerin özellikleri üzerinde önemli biri etkisi vardır.[10]

Boşluk kusurları (bir atomun uyması gereken boş bir alan), geçiş boşlukları (uymadığı yerde sıkışan ekstra bir atom) ve çıkıklar kristalografik kusurlara örnek olarak verilebilir.

Özellikle çıkıklar, malzemelerin mekanik mukavemetini belirlemeye yardımcı olduklarından malzeme bilimi için büyük önem taşırlar.

Yaygın kristalografik kusur tiplerinden bir diğeri ise safsızlıktır. Safsızlık, bir kristalde bulunan yanlış atom türüdür. Örneğin, kusursuz bir elmas kristali yalnızca karbon atomları içerir.

İkiz pirit kristal grubu.

Ancak bazı kristallerde birkaç bor atomunun içerdiği gözlenmiştir. Elmasın renginin maviye dönmesine bu bor safsızlıkları neden olur.

Yarı iletkenlerde kristalin elektriksel özelliklerini büyük ölçüde değiştiren depant adı verilen özel bir safsızlık tipi mevcuttur.

Transistörler gibi yarı iletken cihazlar yarı iletken maddeleri farklı yerlere, belli modellerde koyarlar.

Başka bir kusur çeşidi ise eşleştirmedir. Eşleştirme, kristalografik bir kusur ile bir tane sınırı arasında olur. İkiz bir sınırın iki tarafında farklı kristal yönelimleri bulunur. Bunların bir tane sınırından farkı ise yönelimler rastgele değil, bir ayna görüntüsü biçimindedir.

Kristal düzlem yönelimlerinin yayılımına mozaiklik denir. Mozaik bir kristalin daha küçük bir kristalin birbirlerine göre yanlış hizalanmış birimlerinden oluştuğu varsayılmaktadır.

Kimyasal bağlar

Katıların bir arada tutunabilmesi için metalik bağlar, iyonik bağlar, kovalent bağlar, van der walls bağları gibi çeşitli kimyasal bağlara ihtiyaç duyarlar. Bunları kristal ya da kristal değil diye adlandıramayız. Ancak bazı eğilimlerine aşağıda yer verilmiştir.

Metaller genellikle polikristaldir. Ancak amorf metal ve tek kristalli metaller gibi istisnalar mevcuttur. İyonik bileşikli malzemeler ise genellikle kristal veya polikristaldir. Büyük tuz kristallerinin oluşması için erimiş bir sıvının katılaşması veya bir çözeltiden kristalleşme meydana gelmesi gereklidir. Elmas ve kuvars kovalent olarak bağlanmış katıların en yaygınıdır. Moleküler katılar gibi kristallerin yanı sıra grafitte ara katman bağını bir araya getiren kuvvet zayıf van der walls kuvvetleridir. Polimer malzemeler genellikle kristalin bölgelerini oluşturacaktır. Ancak polimerler şekilsiz olduğu için moleküllerin uzunlukları tam kristalleşmeyi önlemektedir.

Yarı kristaller

Holmiyum–magnezyum–çinko malzemesi ile bir dodekahedronun makroskopik şeklini alabilen kuasikristalleri oluşur. (Sadece yarı kristaller bu şekli alabilir) Kenarlar 2 mm uzunluğundadır.

Bir yarı kristal, periyodik olmayan atom dizilerinden oluşur. Pürüzsüz, düz yüzeylerle şekiller oluşturma yeteneği ve X ışını kırımında ayrı bir desen görüntüleme gibi kristallerle birçok özelliğe sahiptirler.

Yarı kristaller, beş kat simetri gösterme özellikleri ile ünlüdür. Bu durum sıradan bir periyodik kristal için mümkün değildir. Kristalografik sıralama teoremine göre bir kristalin dönme simetrileri iki kat üç kat dört kat ve altı kat ile sınırlıydı. Ancak Shechtman tarafından 1982 yılında keşfedildiğine göre yarı kristaller beş kat gibi kırınım deseni simetrileri ile ortaya çıkabilirler.

Uluslararası Kristalografi Birliği, ''kristal'' terimini hem sıradan periyodik kristaller hem de kuasikristalleri (ayrık bir kırınım diyagramına sahip herhangi bir katı) içerecek şekilde yeniden tanımlamıştır.[11]

Yarı kristaller pratikte oldukça nadirdir. 2004 yılında bilinen yaklaşık 400.000 periyodik kristal mevcuttur.Ancak yalnızca 100 katı madde kuasikristallerden oluşmuştur.[12] Yarı kristali keşfettiği için 2011 yılında Nobel Kimya ödülü Dan Shechtman'a verilmiştir.[13]

Anizotopi'nin özellikleri

Kristaller, cam ve polikristallerin normalde yapamayacağı belirli özel elektrik, optik ve mekanik özelliklere sahiptirler. Bu özellikler kristalin atomik düzenlenmesinde dönme simetrisinin olmamasıyla yani anizotropisiyle ilgilidir. Bu özellik, bir voltajın kristali küçültebileceği veya gerebileceği piezoelektrik etkidir. Bir diğeri ise kristale bakarken çift görüntünün sağlandığı çift kırılmadır. Ayrıca bir kristalin farklı yönlerinde elektrik iletkenliği, elektrik geçirgenliği ve young'un modülü gibi çeşitli özellikleri farklılık gösterebilir. Örneğin, grafit kristalleri bir yığın tabakadan oluşur ve her bir tabaka mekanik olarak çok güçlüdür. Buna rağmen tabakalar gevşek bir şekilde birbirine bağlıdır. Bu yüzden malzemenin mekanik dayanıklılığı gerilme yönüne bağlı olarak farklılık gösterir.

Bu özelliklere tüm kristaller sahip değildir. Aslında bu özellikler kristallere özgü özellikler değildir. Yalnızca çalışma veya stres ile anizotropik hale getirilmiş gözlüklerde veya polikristallerde (örneğin strese bağlı çift kırılma) ortaya çıkabilir.

Kristalografi

Birleşmiş Milletler Temmuz 2012'de, 2014'ün Uluslararası Kristalografi yılı olacağını ilan ederek kristalografi biliminin önemini kabul etmiştir.[14] "Kristalografi" kelimesi Yunanca "soğuk damla, dondurulmuş damla" kelimelerinden türetilmiştir. " Kristalografi'' bir kristalin atomik düzenlemesini yani kristalin yapısını ölçen bilim dalıdır. Bilinen kristal yapılar çok sayıda kristalografik veri tabanlarında saklanır.

Yaygın olarak kullanılan kristalografi tekniklerinden biri X ışını kırınımıdır. X ışını kırınım kristalografisi geliştirilmeden önce kristaller üzerinde yapılan çalışmalar, bir gonyometre kullanarak geometrilerinin fiziksel ölçümlerinin yapılmasına dayanıyordu.[15]

Kaynakça

  1. ^ "Maddenin halleri". 1 Mart 2009 tarihinde kaynağından arşivlendi. 
  2. ^ Ashcroft and Mermin (1976). Solid state physics [katı hal fiziği]. 
  3. ^ G. Cressey and I. F. Mercer, (1999) Crystals, London, Natural History Museum, page 58
  4. ^ One or more of the preceding sentences incorporates text from a publication now in the public domain: Flett, John Smith (1911). "Petrology". In Chisholm, Hugh (ed.). Encyclopædia Britannica. 21 (11th ed.). Cambridge University Press.
  5. ^ Yoshinori Furukawa, "Ice"; Matti Leppäranta, "Sea Ice"; D.P. Dobhal, "Glacier"; and other articles in Vijay P. Singh, Pratap Singh, and Umesh K. Haritashya, eds., Encyclopedia of Snow, Ice and Glaciers (Dordrecht, NE: Springer Science & Business Media, 2011). ISBN 904812641X, 9789048126415
  6. ^ Libbrecht, Kenneth; Wing, Rachel (2015-09-01). The Snowflake: Winter's Frozen Artistry. Voyageur Press. ISBN 9781627887335.
  7. ^ Hjorth-Hansen, E. (2017-10-19). Snow Engineering 2000: Recent Advances and Developments. Routledge. ISBN 9781351416238.
  8. ^ ingilizce sözlük. κρύος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus Digital Library. 
  9. ^ "ingilizce sözlük". 28 Nisan 2015 tarihinde kaynağından arşivlendi. 
  10. ^ Britain), Science Research Council (Great (1972). Report of the Council. H.M. Stationery Office.
  11. ^ nternational Union of Crystallography (1992). "Report of the Executive Committee for 1991". Acta Crystallogr. A. 48 (6): 922. doi:10.1107/S0108767392008328. PMC 1826680
  12. ^ Steurer W. (2004). "Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals". Z. Kristallogr. 219 (7–2004): 391–446. Bibcode:2004ZK....219..391S. doi:10.1524/zkri.219.7.391.35643
  13. ^ "The Nobel Prize in Chemistry 2011". Nobelprize.org. Retrieved 2011-12-29.
  14. ^ UN announcement "International Year of Crystallography". iycr2014.org. 12 July 2012
  15. ^ "The Evolution of the Goniometer". Nature. 95 (2386): 564–565. 1915-07-01. doi:10.1038/095564a0. ISSN 1476-4687

İlgili Araştırma Makaleleri

Katı hâl fiziği, yoğun madde fiziğinin geniş bir dalı olup şekli değiştirilemez maddelerle veya katılarla ilgilenir. Katı hâl fiziği teorisinin ve araştırmalarının en önemli konuları kristallerdir. Çünkü bir kristalin atomları genellikle düzenli (periyodik) dizildiğinde matematiksel modeli daha kolay çıkartılabilir. Bu düzenli yapıya da kristalin karakteristiği denir. Katı hâl fiziğinde genellikle kristallerin incelenmesinin diğer bir nedeni de elektrik, magnetik, optik ve mekanik özelliklerinin çeşitli mühendislik alanları için önemli olmasıdır.

<span class="mw-page-title-main">Mineral</span> inorganik kristalleşmiş katı madde

Mineral, doğal şekilde oluşan, homojen, belirli kimyasal bileşime sahip inorganik kristalleşmiş katı bir maddedir. Buna göre minerallerin özellikleri şöyledir; doğal olarak oluşur, herhangi bir parçası bütününün özelliklerini taşır, belirli bir kimyasal formülü vardır, katı hâlde olup nadiren sıvıdır ve inorganiktir.

Kristalografi mineralojinin bir dalı olup, minerallerin şekillerini ve iç yapılarını inceler. X ışınları ile yapılan yapi incelemelerinde, atom veya moleküllerin, üç boyutlu olarak dizilimleri incelenir. Mineral kristallerinde fizikokimyasal olarak, atom ve moleküller belirli bir düzen içinde bulunurlar.

<span class="mw-page-title-main">Maddenin hâlleri</span> maddenin farklı aşamalarında yer alan farklı hâlleri

Bir fizik terimi olarak maddenin hâli, maddenin aldığı farklı fazlardır. Günlük hayatta maddenin dört farklı hâl aldığı görülür. Bunlar; katı, sıvı, gaz ve plazmadır. Maddenin başka hâlleri de bilinir. Örneğin; Bose-Einstein yoğunlaşması ve nötron-dejeneje maddesi. Fakat bu hâller olağanüstü durumlarda gerçekleşir, çok soğuk ya da çok yoğun maddelerde. Maddenin diğer hâllerininde, örneğin quark-gluon plazmalar, mümkün olduğuna inanılır fakat şu an sadece teorik olarak bilinir. Tarihsel olarak, maddenin özelliklerindeki niteleyici farklılıklara dayanarak ayrım yapılır. Katı hâldeki madde bileşen parçaları ile bir arada tutulur ve böylece sabit hacim ve şeklini korur. Sıvı hâldeki madde hacmini korur fakat bulunduğu kabın şeklini alır. Bu parçalar bir arada tutulur ama hareketleri serbesttir. Gaz hâlindeki madde ise hem hacim olarak hem de şekil olarak bulunduğu kaba ayak uydurur.Bu parçalar ne beraber ne de sabit bir yerde tutulur. Maddenin plazma hâli ise, nötr atomlarda dahil, hacim ve şekil olarak tutarsızdır. Serbestçe ilerleyen önemli sayıda iyon ve elektron içerirler. Plazma, evrende maddenin en yaygın şekilde görülen hâlidir.

<span class="mw-page-title-main">Yarı iletken</span> Normal şartlar altında yalıtkan iken belirli fiziksel etkilerde iletken duruma geçen madde

Yarı iletken üzerine yapılan mekanik işin etkisiyle iletken özelliği kazanabilen, normal şartlar altında yalıtkan olan maddelerdir.

<span class="mw-page-title-main">Katı</span> maddenin 4 halinden biri

Katı, maddenin atomları arasındaki boşluğun en az olduğu halidir. "Katı" olarak adlandırılan bu haldeki maddelerin kütlesi, hacmi ve şekli belirlidir. Bir dış etkiye maruz kalmadıkça değişmez. Sıvıların aksine katılar akışkan değildir. Fiziksel yollarla, diğer üç hal olan sıvı, gaz ve plazmaya dönüştürülebilirler. Altın demir gibi madenler katı maddelere örnektir. Ayrıca katı maddeler atomlarının en yavaş hareket edebildiği haldir. Doğa'da amorf veya kristal yapıda bulunurlar. Amorf katılar maddenin taneciklerinin düzensiz olma durumudur. Kristal katılar ise de maddenin taneciklerinin düzenli olma durumudur. Kristal katılar da aralarında 4'e ayrılır.

<span class="mw-page-title-main">Amorf katı</span>

Amorf katı atomların kararlı bir kristal yapıya sahip olmadığı katılar için kullanılan terim. Yunanca, morphé (şekil) kelimesinden türemiştir. Şekilsiz katı da denmektedir. Amorf katılar, gelişigüzel bir yapı gösterebilirler. Uzun süre beklemede akışkan olduğu gözlenmektedir. Genellikle sıvı halinin ani olarak soğutulmasıyla elde edilirler. Örneğin; cam, lastik ve plastikler bu türdendir. Bu tür maddeler şekilsiz olduğu için amorf grubuna girerler.

<span class="mw-page-title-main">Kristal yapı</span>

Kristal yapı, malzeme biliminde makroskopik olarak kristalli minerallerin yüzeyleri arasında, mikroskobik olarak ise çoğu katının atomları arasında görülen tekrarlı düzeni ifade eder. Mineraloji ve kristalografide kristaller, yüzey düzlemlerinin birbirlerine göre yerleşimi esas alınarak sınıflandırılırlar. Benzer bir örüntü, kristal yapılı katıların atomları ya da iyonları arasında da görülmekte ve yoğun madde fiziğinde yerleşik bir model olarak kullanılmaktadır.

<span class="mw-page-title-main">Başkalaşım kayaçları</span> Isı ve basınca maruz kalan kaya

Başkalaşım kayaçları ya da metamorfik kayaçlar, magmatik ve tortul kayaçların çeşitli etkilerle değişime uğraması sonucu oluşurlar. Mermer, başkalaşım kayaçlarına bir örnek olarak verilebilir. Gnays, elmas ve şist de bu kayaçlara verilebilecek diğer örneklerdir.

Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.

Çok düşük basınçlarda gaz içeren vakum çemberinde, iki elektrot arasına dc voltajı uygulanırsa, aralarında küçük voltajda bir akım geçer ve çember üzerinde düzgün bir potansiyel oluşur. Voltaj arttıkça ışıldama deşarjı oluşur. Katot akım yoğunluğu, katot üzerinde sabit kalır ve katot bölgesi, saçılan malzemenin uyarılma spektrumundan dolayı katot malzemesinin karakteristiğini gösteren renkte hafif bir ışıldamaya sahip olur. Bu renk yüzeyin saçılarak temizlenmesiyle ortaya çıkan değişim ile gözlenebilir. Daha yüksek basınçlarda, katot bölgesinin tüm katodu kapattığı görülür. Bu normal bir ışıldama bölgesidir ve iyon kaplama, saçtırmanın yapıldığı bölgedir. 1000 dc voltajda kendi kendine devam eden dc diyot gaz deşarjını elde etmek için 10 µm Argon basıncı gerekir.

<span class="mw-page-title-main">X ışını kristalografisi</span> bir kristalin atomik veya moleküler yapısını belirlemek için kullanılan, sıralanmış atomların gelen X-ışınları demetinin belirli yönlere kırılmasına neden olduğu teknik

X ışını kristalografisi bir kristalin atomik ve moleküler yapısını incelemek için kullanılan ve kristalleşmiş atomların bir X-ışını demetindeki ışınların kristale özel çeşitli yönlerde kırınımı olayına dayanan, bir yöntemdir. Kırınıma uğrayan bu demetlerin açılarını ve genliklerini ölçerek bir kristalografi uzmanı kristaldeki elektronların yoğunluğunun üç boyutlu bir görüntüsünü elde edebilir. Bu elektron yoğunluğundan kristaldeki atomların kimyasal bağları, kristal yapıdaki düzensizlikler ve bazı başka bilgilerle birlikte ortalama konumları tespit edilebilir.

<span class="mw-page-title-main">Kristal yapı kusurları</span>

Kristal yapıların atom veya molekül dizilimlerinde görülen çeşitli kusurlar vardır. Bu kusurlar noktasal, çizgisel, düzlemsel ve hacimsel olmak üzere dört ana başlığa ayrılmaktadır. Bu kusurların biçimi, boyutu, miktarı ve yeri maddenin özelliklerini direkt olarak etkilemektedir.

<span class="mw-page-title-main">Elektronik bant yapısı</span>

Katı hal fiziğinde, bir katının elektron kuşak yapısı ; katıdaki bir elektronun sahip olabileceği enerji aralıkları ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları anlamanın temelini oluşturmaktadır.

<span class="mw-page-title-main">Tane boyu</span>

Tane boyutu münferit tortu tanelerinin çapı veya kırıntılı kayaçlardaki lithified parçacıklardır. Terim ayrıca diğer zerre şekilli malzemelere de uygulanabilecektir. Bu, bir parçacık veya tahıl içindeki tek bir kristalin boyutunu ifade eden kristalit boyutundan farklıdır. Tek bir tane birkaç kristalden oluşabilir. Granül malzeme çok küçük kolloidal parçacıklardan kil, silt, kum, çakıl ve parke taşlarından kayalara kadar değişebilir.

<span class="mw-page-title-main">Dilinim</span>

Dilinim, yapısal jeoloji ve petrolojide, deformasyon ve metamorfizmanın bir sonucu olarak gelişir. Deformasyonun derecesi ve metamorfizma, kayaç türü ile birlikte gelişen yarılma özelliğinin türünü belirler. Genellikle bu yapılar basınçlı çözeltiden etkilenen minerallerden oluşan ince taneli kayaçlarda oluşur.

Safsızlık, belirli miktarda sıvı, gaz veya katı kimyasal içinde o kimyasalın genel içeriğinden farklı yabancı kimyasallar bulunmasıdır.

Katı hâl kimyası, bazen malzeme kimyası olarak da adlandırılır, katı faz malzemelerinin, özellikle, ancak sadece moleküler olmayan katıların sentezi, yapısı ve özelliklerinin incelenmesidir. Bu nedenle, katı hal fiziği, mineraloji, kristalografi, seramik, metalurji, termodinamik, malzeme bilimi ve elektronik ile yeni malzemelerin sentezine ve karakterizasyonuna odaklanan güçlü bir örtüşmeye sahiptir. Katılar, ana partiküllerinin düzenlenmesinde mevcut olan düzenin doğasına göre kristal veya amorf olarak sınıflandırmak mümkündür.

Polimerlerin kristalizasyonu, moleküler zincirlerinin kısmi hizalanmasıyla ilişkili bir işlemdir. Bu zincirler birlikte katlanır ve sferülit adı verilen daha büyük küresel yapılar oluşturan lamel adı verilen düzenli bölgeler oluşturmaktadır. Polimerler, erime, mekanik gerdirme veya çözücü buharlaşmasından soğutma üzerine kristalleşebilmektedir. Kristalleşme, polimerin optik, mekanik, termal ve kimyasal özelliklerini etkilemektedir. Kristallik derecesi farklı analitik yöntemlerle tahmin edilmektedir ve genellikle "yarı kristal" olarak adlandırılan kristalize polimerlerle tipik olarak %10 ile %80 arasında değişmektedir. Yarı kristalli polimerlerin özellikleri, sadece kristallik derecesi ile değil, aynı zamanda moleküler zincirlerin boyutu ve yönü ile de belirlenmektedir.

<span class="mw-page-title-main">Deformasyon mekanizması</span>

Deformasyon mekanizması, geoteknik mühendisliğinde, bir malzemenin iç yapısındaki, şeklindeki ve hacmindeki değişikliklerden sorumlu olan mikroskobik ölçekte meydana gelen bir süreçtir. Süreç düzlemsel süreksizliği ve/veya atomların kristal kafes yapısı içindeki orijinal konumlarından yer değiştirmesini içermektedir. Bu küçük değişiklikler, kayalar, metaller ve plastikler gibi malzemelerin çeşitli mikro yapılarında korunmaktadır ve optik veya dijital mikroskop kullanılarak derinlemesine incelenebilmektedir.