İçeriğe atla

Kozmojenik nüklitler

Kozmojenik nüklitler (veya kozmojenik izotoplar), kozmik ışın ufalanmasının neden olduğu güneş sistemindeki bir atom çekirdeği ile birlikte yüksek enerjili bir kozmik ışın etkileştiğinde oluşan nadir izotoplardır. Bu izotoplar Dünya'nın atmosferinde kaya ve toprak gibi, Dünya dışında göktaşları gibi maddelerde üretilen materyallerdir. Kozmojenik izotopları ölçen bilim adamları, jeolojik ve astronomik süreçlerin aralığı hakkında fikir elde edebiliyor. Hem radyoaktif ve istikrarlı izotoplar vardır. Bu radyoizotopların bazıları Trityum, Karbon-14, Fosfor-32’dir.

Bazı hafif (düşük atom numarası) eski nüklitlerin (bazı lityum, berilyum ve bor izotopları) sadece büyük patlama sırasında ortaya çıkmadığı ve büyük patlama sonrasında da oluşmuş olduğu düşünülür fakat güneş sistemindeki yıldızlar arası gaz ve toz üzerindeki ufalanmış kozmik ışınlar işlemiyle yoğunlaşmadan önce oluşmuştur. Bu onların oranları ve Dünya’daki diğer bazı nüklitlerin bolluğu ile karşılaştırıldığında bu gibi kozmik ışınların bolluğunu açıklıyor. Ancak, bunların oluşumu için mekanizma tam olarak aynı olsa bile, "güneş sisteminde içindeki yerinde" kozmojenik nüklitler için rastgele tanımlanan nitelilik "kozmojenik çekirdekler" olarak adlandırılmasını güneş sisteminin oluşumundan önce ufalanmış kozmojenik ışınlar tarafından oluşturulmuş eski nüklitleri engeller. Bu aynı nüklitler Dünya üzerine, atmosfere küçük miktarlarda kozmik ışınların gelmesi Dünya'da Meteoritler oluşturulmuştur. Ancak berilyum (tümü kararlı berilyum-9) güneş sistemindeki daha önce var olan yoğunlaşma ve güneş sistemini meydana getiren çok daha büyük miktarlarda en baştan beri mevcuttur. Dolayısıyla güneş sistemini meydana getiren malzemelerin içinde mevcuttur.

Bir nüklit her iki sınıfa ait olamaz. Başka bir şekilde ayrım yapmak hangi alt küme olarak adlandırıldığının zamanlamasını belirler. Geleneksel olarak bazı kararlı izotoplar lityum, berilyum ve borun büyük patlama ve güneş sisteminin oluşumunda kozmik ışın ufalanmaları tarafından üretildigi düşünülmektedir. İlkel nüklit berilyum-9 kararlı berilyum izotoplarına örnektir.

Produktion modları

Aşağıda atmosfer kozmik ışınlarının etkisiyle oluşan radyoizotoplarının bir listesi bulunuyor. Liste aynı zamanda izotop üretim modunu da içeriyor.[1] Bu şekilde üretilen önemli izotopları 3H, 7Be, 14C, 22Na, 32P, 33P ve 33S.[1]

Havada kozmik ışınların etkisiyle oluşan izotoplar
izotopOluşum Modu
³H (trityum) 14N (n, 12C)³H
7Be Spallation (N ve O)
10Be Spallation (N ve O)
11C Spallation (N ve O)
14C 14N (n, p) 14C
18F 18O (p, n)18F ve Spallation (Ar)
22Na Spallation (Ar)
24Na Spallation (Ar)
28Mg Spallation (Ar)
31Si Spallation (Ar)
32Si Spallation (Ar)
32P Spallation (Ar)
34mCl Spallation (Ar)
35S Spallation (Ar)
36Cl 35Cl (n, γ)36Cl
37Ar 37Cl (p, n)37Ar
38Cl Spallation (Ar)
39Ar 38Ar (n, γ)39Ar
39Cl 40Ar (n, np)39Cl & spallation (Ar)
41Ar 40Ar (n, γ)41Ar
81Kr 80Kr (n, γ) 81Kr

Bazı kozmojenik nüklidler toprak ve kozmik ışınlarına maruz kaya içinde yerinde meydana getirilir. Yukarıda yer almayan ek nüklidler şunlardır:

Uygulamalar tarafından listelenen izotop jeolojisi

Yaygın olarak ölçülen uzun ömürlü kozmojenik izotopları
ElementYığılmaYaşTipik uygulama
alüminyum26720,000kayaların tortuya maruz kalması
Klor36308,000kayaların akarsuya maruz kalması
Kalsiyum41103,000karbonat kayaları
İyot12915.7 milyonyeraltı sularının temizlenmesi

Kaynakça

  1. ^ a b SCOPE 50 - Radioecology after Chernobyl 13 Mayıs 2014 tarihinde Wayback Machine sitesinde arşivlendi., the Scientific Committee on Problems of the Environment (SCOPE), 1993. See table 1.9 in Section 1.4.5.2.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İzotop</span> Aynı elemente ait farklı atomlara verilen isim

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

<span class="mw-page-title-main">Kitle imha silahı</span> Çok sayıda insan ölümüne ve büyük hasarlara neden olan silah türü

Kitle imha silahı ya da ABC silahı, insanlar başta olmak üzere canlılar üzerinde büyük miktarda yıkıma sebep olabilecek anti-personel silahlarının genel adıdır. Çoğunlukla kimyasal, biyolojik, radyoaktif ve nükleer silahlar(KBRN silahları) bu adla anılırlar. Bu ibare ilk olarak 1937'de İspanya'nın Guernica kentinin Naziler tarafından uğratıldığı hava saldırısı için kullanılmış ve de 2003'te Amerika Birleşik Devletleri tarafından Irak'ın işgali için sebep olarak gösterilmiştir; fakat daha sonra bu iddianın Irak'ta hiçbir KİS bulunmamasıyla doğru olmadığı kanıtlanmıştır.

<span class="mw-page-title-main">Trityum</span> hidrojenin radyoaktif izotopu

Trityum, hidrojenin radyoaktif izotopudur. 1934 yılında, çok hızlı döteryum çekirdeği ile döteryum bileşiklerinin bombardıman edilmesi sırasında nükleer transmutasyon ürünü olarak keşfedildi. Trityumun sembolü 3H veya T'dir. Atom ağırlığı, 3,016'dır. T2 sıvısı -254,54 °C'de katılaşır, -248,12 °C'de kaynar, buharlaşma ısısı 332 cal/mol ve süblimleşme ısısı 392 cal/mol'dür. Kimyevi özellik bakımından hidrojene benzer. Fakat fiziki özellikleri hidrojeninkinden farklıdır.

<span class="mw-page-title-main">Jeokronoloji</span> kayaların kendisinde bulunan imzaları kullanarak kaya, fosil ve sediman yaşını belirleme bilimi

Jeokronoloji, kayaların kendisinde bulunan imzaları kullanarak kaya, fosil ve sediman yaşını belirleme bilimidir. Mutlak jeokronoloji radyoaktif izotoplarla gerçekleştirilebilirken, göreceli jeokronoloji paleomanyetizma ve kararlı izotop oranları gibi araçlarla sağlanır. Birden fazla jeokronolojik göstergeleri birleştirerek, geri kazanılan yaşın hassasiyeti geliştirilebilir.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Karanlık madde</span> evrenin %23 kadarını oluşturan gizemli bir madde türü

Karanlık madde, astrofizikte, elektromanyetik dalgalarla etkileşime girmeyen, varlığı yalnız diğer maddeler üzerindeki kütleçekimsel etkisi ile belirlenebilen varsayımsal maddelere denir. Karanlık maddelerin varlığını belirlemek için gök adaların döngüsel hızlarından, gök adaların diğer gök adalar içerisindeki yörüngesel hızlarından, geri planda yer alan maddelere uyguladığı kütleçekimsel mercekleme özelliğinden ve gök adaların içerisindeki sıcak gazların sıcaklık dağılımından yararlanılır. İncelemeler, gök adalarda, gök ada gruplarında ve Evren'de, görülebilen maddelerden çok daha fazla karanlık madde olduğunu göstermektedir. Karanlık maddelerin bileşenleri tamamen bilinmemekle birlikte, WIMP'ler, aksiyonlar, sıradan ve ağır nötrinolar, gezegenler ve sönmüş yıldızlarla birlikte verilen isim MACHO'lar ile ışıma yapmayan gaz bulutlarından oluşur.

<span class="mw-page-title-main">Nüklit</span>

Nüklit ya da nükleer tür; atom numarası (Z), kütle numarası (A) ve nükleer enerji durumuna göre nitelenen herhangi bir atom türüdür. Bu nitelemede; atom numarasını oluşturan proton sayısı ve proton sayısıyla birlikte kütle numarasını oluşturan nötron sayısı (N) değerlendirilirken, söz konusu enerji durumunun yarı ömrü de gözlem yapmayı sağlayacak kadar (genellikle 10-10 saniyeden) uzun olmalıdır.

'Müon, elektron benzeri-1 e yük ve 1/2 spinli ancak daha yüksek kütleye sahip bir temel parçacık. Müon parçacığı, lepton olarak sınıflandırılmıştır. Diğer leptonlar gibi, Müonun da daha küçük parçacıklara indirgenemeyen bir parçacık olduğu düşünülmektedir.

<span class="mw-page-title-main">Nükleer fizik</span> atom çekirdeğinin yapısı ve davranışı ile uğraşan fizik alanı

Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.

Yarı ömür, genel olarak, azalmakta olan bir maddenin baştaki miktarın yarısına düşmesi için gereken zaman. Bu zaman T1/2 olarak gösterilir. Birimi zaman birimidir. Yarı ömür kavramı özellikle radyoizotop denilen izotopların bozunma hesaplarında kullanılır.

<span class="mw-page-title-main">Kozmik ışın</span> Çoğunlukla Güneş sistemi dışından kaynaklanan yüksek enerjili parçacık

Kozmik ışınlar, temelde Güneş Sistemi'nden yıldızlardan hatta uzak galaksilerden kaynaklanan, yüksek enerjili bir parçacık yağmurudur. Bu ışınlar Dünya atmosferi ile etkileştiğinde, bazen yüzeye ulaşan ikincil kozmik ışın duşlarını üretebilir. Öncelikle yüksek enerjili protonlardan ve atom çekirdeğinden oluşan bu ışınlar güneş veya güneş sistemimizin dışından kaynaklanır. Fermi Uzay Teleskobu'ndan (2013) elde edilen veriler, birincil kozmik ışınların önemli bir bölümünün yıldızların süpernova patlamalarından kaynaklandığının kanıtı olarak yorumlanmıştır.

<span class="mw-page-title-main">Radyonüklit</span>

En basit çekirdek olan hidrojen çekirdeği hariç bütün çekirdeklerde nötron ve proton bulunur. Nötronların protonlara oranı hafif izotoplarda birebir oranındayken periyodik tablonun sonundaki ağır elementlere doğru bu oran gittikçe artmaktadır. Bu oran daha da artarak nüklitin artık kararlı olmadığı bir noktaya gelir. Daha ağır nüklitler, dışarıya verecekleri fazla enerjileri olduğundan kararsızlardır. Bunlara radyonüklit denir. Bu süreçte radyonüklid radyoaktif bozunmaya uğrar ve bu esnada gama ışını ve/veya atom altı parçacıklar yayabilir. Bu parçacıklar iyonlaştırıcı radyasyonu oluştur. Radyonüklidler doğada bulunabildikleri gibi yapay yollarla da üretilebilirler.

<span class="mw-page-title-main">Kozmik toz</span>

Kozmik toz, uzayda var olan bir tozdur. Çoğu kozmik toz parçacığı, mikrometeoroitlerde olduğu gibi birkaç molekül ile 0,1 mm (100 µm) arasında ölçülür. Daha büyük parçacıklara ise meteoroit denir. Uzaydaki tüm tozun küçük bir kısmı yıldızların bıraktığı yoğunlaşmış maddeler gibi daha büyük ateşe dayanıklı mineraller içerir. Buna yıldız tozu denir. Yerel yıldızlararası ortam olan Yerel Kabarcığın toz yoğunluğu ortalama 10-6 x toz parçacığı/m³ 'tür ve her toz parçacığı yaklaşık 10–17 kg'lık bir kütleye sahiptir.

<span class="mw-page-title-main">Nükleosentez</span> Başta proton ve nötronlar olmak üzere önceden var olan nükleonlardan yeni atom çekirdekleri yaratan süreç

Nükleosentez, daha önceden var olan çekirdek parçacıklarından, esasen proton ve nötronlardan, yeni atomik çekirdeklerin yaratılması sürecidir. İlk atomik çekirdekler, Büyük Patlama'dan yaklaşık üç dakika sonra, Büyük Patlama nükleosentezi olarak bilinen sürecin sonunda oluşmuştur. Hidrojen ve helyumun ilk yıldızların bileşenlerini oluşturması ve kainatın bugünkü hidrojen/helyum oranı o zamanlara dayanır.

<span class="mw-page-title-main">X ışını astronomisi</span>

X-ışını astronomisi, astronomik nesnelerin X-ışınının gözlem ve algılama çalışmalarıyla uğraşan astronominin bir dalıdır. X-ışınları Dünya’nın atmosferi tarafından emildiği için x-ışınlarını tespit eden balon, sondaj roketleri ve uydular belirli bir yükseklikte bulunmalıdır. X-ışını astronomisi, Mauna Kea Gözlemevlerindeki gibi standart ışık emilimi olan teleskoplardan daha ilerisini gören uzay teleskopları ile ilgili bir uzay bilimidir.

Tarihlendirme yöntemleri özellikle sağladığı yüksek doğruluk derecesi ve güvenilir sonuçlar veriyor olması nedeniyle başta yerbilimleri olmak üzere birçok disiplin tarafından, çok çeşitli amaçlar için kullanılmaktadır.

Nükleer dönüşüm, bir kimyasal element ya da bir izotopun birbirine dönüşmesidir. Her element atomlarındaki proton sayılarıyla tanımlanırlar. Başka bir deyişle, atom çekirdeği içindeki proton ya da nötron sayısında değişim gerçekleştiğinde nükleer dönüşüm meydana gelir.

<span class="mw-page-title-main">Radyometrik tarihleme</span>

Radyometrik tarihleme veya radyoaktif tarihleme, taş ya da karbon gibi maddelerin oluştuğunda izini sürdüren radyoaktif kirliliklerin seçici olarak katıldığı vakit ile yaşını tayin etmek için kullanılan bir yöntemdir. Bu yöntem, maddenin içindeki tabii olarak oluşan izotopların bolluğunu, bilinen sabit bir azalım hızında oluşan bozunum ürünleri bolluğu ile karşılaştırır.

<span class="mw-page-title-main">Kozmolojik lityum sorunu</span>

Astronomide, lityum sorunu veya lityum tutarsızlığı, galaksimizdeki metal açısından fakir halo yıldızlarının gözlemlerinden anlaşılan lityumun ilkel bolluğu ile Big Bang nükleosentezi + WMAP, CMB'nın(Kozmik Mikrodalga Arkaalan Işınımı kozmik baryon yoğunluğu tahminleri nedeniyle teorik olarak var olması gereken miktar arasındaki tutarsızlığı ifade eder. Yani, Big Bang'in en yaygın kabul gören modelleri, ilkel lityumun, özellikle 7Li'nin üç katı kadar var olması gerektiğini öne sürüyor. Bu, tahminlerle tutarlı olan hidrojen ve helyum izotoplarının gözlenen bolluğuyla çelişir. Tutarsızlık, bu ilkel bollukları standart BBN tahminlerinden kozmik baryon içeriğinin bir fonksiyonu olarak tasvir eden, astrofizikçi David Schramm'ın onuruna adlandırılan sözde "Schramm planı" ile vurgulanmıştır.

Yüzeye çıkma tarihlemesi, bir kayanın yerküre yüzeyinde veya yakınında açıkta kaldığı sürenin uzunluğunu tahmin etmeye yönelik jeokronolojik tekniklerin bir derlemesidir. Yüzeye çıkma tarihlemesi, buzul ilerlemelerini ve geri çekilmelerini, erozyon geçmişini, lav akışlarını, göktaşı çarpmalarını, kaya kaymalarını, fay yüzeylerini, mağara gelişimini ve diğer jeolojik olayları tarihlendirmek için kullanılır. En çok 103 ile 106 yıl arasında açıkta kalan kayalar için kullanışlıdır.