İçeriğe atla

Kovalent bağ

İki hidrojen atomunun iki elektronu paylaştığı H2ni (sağda) oluşturan bir kovalent bağ

Kovalent bağ, atomlar arasında elektron çiftleri oluşturmak için elektronların paylaşımını içeren kimyasal bağdır. Bu elektron çiftlerine paylaşılan çiftler veya bağ çiftleri denir. Atomlar arasında elektronları paylaştıklarında çekici ve itici kuvvetlerin kararlı dengesine kovalent bağ denir.[1] Birçok molekül için elektronların paylaşılması her atomun kararlı elektronik gruplaşmasına denk gelen tam değerlik kabuğunun eşdeğerine ulaşmasına olanak tanır.

Organik kimyada kovalent bağ, iyonik bağdan daha çok yaygındır.

Kovalent bağlanma ayrıca σ-bağ, π-bağ, metal-metal bağı, agostik etkileşimler, bükülmüş bağlar, üç merkezli iki elektronlu bağlar ve üç merkezli dört elektronlu bağlar dahil olmak üzere birçok etkileşim türünü içerir.[2][3]

Kovalent bağ terimi 1939'dan kalmadır.[4] Ön ek, ko-, ortaklaşa eyleme katılan, daha az derecede de ortaklaşa vb. olan anlamına gelir. Dolayısıyla "ko-valent bağ", özünde, değerlik bağı teorisinde tartışıldığı gibi, atomların "değerliği" paylaştığı anlamına gelir.

H2 molekülünde hidrojen atomları iki elektronu kovalent bağ yoluyla paylaşır.[5] Kovalentlik benzer elektronegatifliği olan atomlar arasında yaygındır. Bu nedenle kovalent bağlanma, iki atomun mutlaka aynı elementlerden olmasını gerektirmez, yalnızca karşılaştırılabilir elektronegatifliğe sahip olmalarını gerektirir. Elektronların ikiden fazla atom üzerinde paylaşılmasını gerektiren kovalent bağın yöresizleştiği söylenir.

Genellikle bağ, ortaya çıkan molekülü bir arada tutan ortak çekim gücü olarak tanımlanabilir. Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dönerler, iki çekirdek arasındaki bölgede daha uzun süre bulunduklarından bu bölgede (-) yüklü bir alan oluştururlar. Bu alan, her iki çekirdeğe bir çekme kuvveti uygulayarak bir bağ oluşturur.

Kovalent bağ, Polar Kovalent Bağ ve Apolar Kovalent Bağ olmak üzere ikiye ayrılır.

Kovalent bağ, söz konusu atomların dış yörüngelerinin dolması ile oluşur. Bu tür bağlar, moleküller arası hidrojen bağından daima daha güçlü, iyonik bağ ile ise ya aynı güçte ya da daha güçlüdür.

Bazı inorganik maddelerin hidrojen(H), amonyak(NH3),klor(Cl), su(H2O) ve azot(N) molekülleri ile tüm organik maddelerin molekülleri kovalent bağ ile bir arada tutulmaktadır.

Kovalent bağ (iyonik ve metalik bağın tersine) yönlüdür; bağ açılarının etkileşimin gücü üzerinde etkisi büyüktür. Bu etkinin kaynağı, kovalent bağların, atomik yörüngelerin üst üste binmesiyle oluşmasından ileri gelir. Atomik yörüngeler (p, d ve f yörüngeleri) hepsi yönlü karakterde olup, bağlanma esnasında önemli ölçüde yöne bağlı etkileşime neden olurlar.

Kovalent bağ, genellikle benzer elektronegatifliği olan atomlar arasında gerçekleşir. Bu nedenle ametaller, daha kolaylıkla kovalent bağı tercih eder ve metaller de kolayca yerlerinden oynatılabilen elektronların daha serbestçe dolaşabildiği metalik bağ yaparlar. Ametallerde bir elektronun serbest kalması daha zordur, dolayısıyla benzer elektronegatifliği olan bir madde ile birleşme söz konusu olduğunda o elektronun paylaşılması tek seçenek olur.

Tarihçe

Kovalent bağlanmadaki ilk kavramlar, metan molekülünün bu tür görüntüsünden ortaya çıkmıştı. Lewis yapısı'nda atomlar arasında paylaşılan elektronlar belirtilerek kovalent bağ ima edilir.

Bağlanmayla ilgili kovalentlik terimi ilk kez 1919'da Irving Langmuir tarafından Journal of the American Chemical Society 'nin "Atomlarda ve Moleküllerde Elektronların Düzenlenmesi" başlıklı makalesinde kullanıldı. Langmuir şunu yazmıştı: "Belirli bir atomun komşularıyla paylaştığı elektron çiftlerinin sayısını kovalentlik terimiyle belirteceğiz."[6]

Kovalent bağlanma fikri, 1919'dan birkaç yıl önce, 1916'da atomlar arasındaki elektron çiftlerinin paylaşımını açıklayan Gilbert N. Lewis'e kadar izlenebilir[7] (ve 1926'da ışınım enerjisinin en küçük birimi için "foton" terimini de icat etti). Değerlik elektronlarının (dış kabuktakiler) atom sembollerinin etrafında noktalar olarak temsil edildiği Lewis gösterimini veya elektron nokta gösterimini veya Lewis nokta yapısını tanıttı. Atomlar arasında bulunan elektron çiftleri kovalent bağları temsil eder. Çoklu çiftler, ikili bağlar ve üçlü bağlar gibi çoklu bağları temsil eder.

Burada gösterilmeyen alternatif temsil biçimi, düz çizgilerle temsil edilen bağ- oluşturan elektron çiftlerine sahiptir.[8]

Kovalent bağ türleri

Atomik yörüngeler (s yörüngeleri hariç) farklı türde kovalent bağlara yol açan belirli yönsel özelliklere sahiptir.

Sigma (σ) bağları en güçlü kovalent bağlardır ve iki farklı atom üzerindeki yörüngelerin kafa kafaya örtüşmesinden kaynaklanır. Bir tek bağ genellikle bir σ bağıdır.

Pi (π) bağları daha zayıftır ve p (veya d) yörüngeleri arasındaki yanal örtüşmeden kaynaklanır. Belirli iki atom arasındaki ikili bağ bir σ ve bir π bağından ve üçlü bağ ise bir σ ve iki π bağından oluşur.[8]

Kovalent bağlar ayrıca bağın kimyasal polaritesini belirleyen bağlı atomların elektronegatifliğinden de etkilenir. Eşit elektronegatifliği olan iki atom, H-H gibi polar olmayan kovalent bağlar oluşturur. Eşit olmayan bir ilişki, H−Cl'de olduğu gibi kutupsal bir kovalent bağ oluşturur. Ancak polarite aynı zamanda geometrik asimetriyi de gerektirir, aksi takdirde dipoller birbirini götürebilir ve sonuçta kutupsal olmayan bir molekül ortaya çıkabilir.[8]

Kovalent yapılar

Bireysel moleküller, moleküler yapılar, makromoleküler yapılar ve dev kovalent yapılar dahil olmak üzere kovalent maddeler için çeşitli yapı türleri vardır.

Bireysel moleküllerin atomları bir arada tutan güçlü bağları vardır, ancak genellikle moleküller arasında ihmal edilebilir çekim kuvvetleri vardır. Bu tür kovalent maddeler genellikle örneğin HCl, SO2, CO2 ve CH4 gibi gazlardır.

Moleküler yapılarda zayıf çekim kuvveti vardır. Bu tür kovalent maddeler, alçak kaynama sıcaklık değerli sıvılar (etanol gibi) ve alçak erime sıcaklık değerli (iyot ve katı CO2 gibi) katılardır.

Makromoleküler yapılar, polietilen ve naylon gibi sentetik polimerler ve proteinler ve nişasta gibi biyopolimerler dahil olmak üzere zincirlerdeki kovalent bağlarla bağlanan çok sayıda atoma sahiptir.

Ağ kovalent yapıları (veya dev kovalent yapılar), tabakalara (grafit gibi) veya 3 boyutlu yapılara (elmas ve kuvars gibi) bağlı çok sayıda atom içerir.

Bu maddeler yüksek erime ve kaynama noktalarına sahiptir, sıklıkla kırılgandır ve yüksek elektriksel direnç gösterme eğilimindedir. Yüksek elektronegatiflik ve üç veya dört elektron çifti bağı oluşturma yeteneği olan elementler genellikle bu kadar büyük makromoleküler yapılar oluşturur.[9]

1 ve 3 elektronlu bağlar

Bireysel 2e- bağı ve 3e- bağının Lewis ve MO diyagramları

Tek elektronlu radikal türlerde bir veya üç elektronlu bağlar bulunabilir. 1 elektronlu bağın en basit örneği dihidrojen katyonundadır H+2. 1 elektronlu bağlar genellikle 2 elektronlu bağın yaklaşık yarısı kadar bağ enerjisine sahiptir ve bu nedenle "yarım bağlar" denilir. Ancak istisnalar da vardır: Dilityum durumunda bağ aslında 1 elektronlu Li+2 2 elektronlu Li2'ye göre daha güçlüdür. Bu istisna hibritleşme ve iç kabuk etkileri açısından açıklanabilir.[10]

3 elektronlu bağlanmanın en basit örneği helyum dimer katyonu He+2'da bulunabilir. "Yarım bağ" olarak kabul edilir çünkü yalnızca paylaşılan 1 elektrondan oluşur (2 yerine);[11] Moleküler yörünge açısından üçüncü elektron, diğer iki elektronun oluşturduğu bağın yarısını iptal eden bir anti-bağlanma yörüngesindedir. İki adet 2 elektronlu bağa ek olarak 3 elektronlu bağı olan molekülün başka bir örneği de NO formüllü azot monoksit'tir.

Oksijen O2 molekülünün ayrıca iki adet 3 elektronlu bağa ve bir adet 2 elektronlu bağı olduğu kabul edilebilir; bu onun paramanyetizmasını ve resmi bağ sıralamasının 2 olmasını açıklar.[12] Klordioksit ve onun daha ağır benzerleri bromdioksit ve iyotdioksit de 3 elektronlu bağlar vardır. 1 elektron bağlarına sahip moleküller genellikle oldukça reaktiftir. Bu tür bağlar yalnızca benzer elektronegatifliği olan atomlar arasında kararlıdır.[12]

3e bağıyla değiştirilmiş Lewis yapıları
Azot monoksit
Dioksijen

Ayrıca bakınız

Dış bağlantılar


Kaynakça

  1. ^ Whitten, Kenneth W.; Gailey, Kenneth D.; Davis, Raymond E. (1992). "7-3 Formation of covalent bonds". General Chemistry (4. bas.). Saunders College Publishing. s. 264. ISBN 0-03-072373-6. 
  2. ^ March, Jerry (1992). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley & Sons. ISBN 0-471-60180-2. 
  3. ^ Gary L. Miessler; Donald Arthur Tarr (2004). Inorganic Chemistry. Prentice Hall. ISBN 0-13-035471-6. 
  4. ^ Merriam-Webster – Collegiate Dictionary (2000).
  5. ^ "Chemical Bonds". Hyperphysics.phy-astr.gsu.edu. 20 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Haziran 2013. 
  6. ^ Langmuir, Irving (1 Haziran 1919). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 41 (6). ss. 868-934. doi:10.1021/ja02227a002. 26 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Mayıs 2024. 
  7. ^ Lewis, Gilbert N. (1 Ocak 1916). "The atom and the molecule". Journal of the American Chemical Society. 38 (4). ss. 762-785. doi:10.1021/ja02261a002. 25 Ağustos 2019 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 5 Mayıs 2024. 
  8. ^ a b c McMurry, John (2016). Chemistry (7 bas.). Pearson. ISBN 978-0-321-94317-0. 
  9. ^ Stranks, D. R.; Heffernan, M. L.; Lee Dow, K. C.; McTigue, P. T.; Withers, G. R. A. (1970). Chemistry: A structural view. Carlton, Victoria: Melbourne University Press. s. 184. ISBN 0-522-83988-6. 
  10. ^ Weinhold, F.; Landis, C. (2005). Valency and Bonding. Cambridge. ss. 96-100. ISBN 0-521-83128-8. 
  11. ^ Harcourt, Richard D., (Ed.) (2015). "Chapter 2: Pauling "3-Electron Bonds", 4-Electron 3-Centre Bonding, and the Need for an "Increased-Valence" Theory". Bonding in Electron-Rich Molecules: Qualitative Valence-Bond Approach via Increased-Valence Structures. Springer. ISBN 9783319166766. 
  12. ^ a b Pauling, L. (1960). The Nature of the Chemical Bond. Cornell University Press. ss. 340-354. 

İlgili Araştırma Makaleleri

Kimya, maddenin yapısını, özelliklerini, birleşimlerini, etkileşimlerini, tepkimelerini araştıran ve uygulayan bilim dalıdır. Kimya bilmi daha kapsamlı bir ifadeyle maddelerin özellikleriyle, sınıflandırılmasıyla, atomlarla, atom teorisiyle, kimyasal bileşiklerle, kimyasal tepkimelerle, maddenin hâlleriyle, moleküller arası ve moleküler kuvvetlerle, kimyasal bağlarla, tepkime kinetiğiyle, kimyasal dengenin prensipleriyle vb konularla ilgilenir. Kimyanın en önemli dalları arasında analitik kimya, anorganik kimya, organik kimya, fizikokimya ve biyokimya sayılır.

Elektronegatiflik, kimyada bağ yapımında kullanılan elektronların bağı oluşturan atomlar tarafından çekilme gücüdür. Klor gibi dış enerji seviyeleri hemen hemen tamamen doldurulmuş atomlar güçlü elektronegatiftirler ve kolaylıkla elektron alırlar. Buna karşın sodyum gibi dış seviyeleri hemen hemen boş olan atomlar kolaylıkla elektronlarını verirler ve güçlü elektropozitiftirler. Elektronegatifler ile elektron ilgileri karıştırılmamalıdır.

<span class="mw-page-title-main">Molekül</span> birbirine bağlı gruplar halindeki atomların oluşturduğu kimyasal bileşiklerin en küçük temel yapısı

Molekül, birbirine bağlı gruplar halindeki atomların oluşturduğu kimyasal bileşiklerin en küçük temel yapısına verilen addır. Diğer bir ifadeyle bir molekül bir bileşiği oluşturan atomların eşit oranlarda bulunduğu en küçük birimdir. Moleküller yapılarında birden fazla atom içerirler. Bir molekül aynı iki atomun bağlanması sonucu ya da farklı sayılarda farklı atomların bağlanması sonucunda oluşabilirler. Bir su molekülü 3 atomdan oluşur; iki hidrojen ve bir oksijen. Bir hidrojen peroksit molekülü iki hidrojen ve 2 oksijen atomundan oluşur. Diğer taraftan bir kan proteini olan gamma globulin 1996 sayıda atomdan oluşmakla birlikte sadece 4 çeşit farklı atom içerir; hidrojen, karbon, oksijen ve nitrojen. Molekülleri oluşturan kimyasal bağlara Moleküler bağlar denir. Bunlar kovalent, iyonik ve metalik bağlardır.

<span class="mw-page-title-main">Hidrojen bağı</span>

Kimya'da, hidrojen bağı öncelikle daha elektronegatif bir "verici" atom veya gruba (Dn) kovalent bağla bağlanan bir hidrojen (H) atomu ile ve yalnız bir çift elektron taşıyan başka bir elektronegatif atom arasındaki elektrostatik çekim kuvvetidir.

<span class="mw-page-title-main">İyonik bağ</span> doğrudur

İyonik bağ, zıt yüklü iyonlar arasındaki elektrostatik kuvvetlere dayanan bir kimyasal bağ türüdür.

<span class="mw-page-title-main">Metalik bağ</span> kimyasal bağ türü

Metalik bağ, esas olarak metaller arasındaki, bir ya da daha çok atomu bir arada tutan bir kimyasal bağ türüdür. Metal atomlarının latisindeki serbest elektronların yer değiştirmiş olarak paylaşılması esasına dayanır. Metalik bağ, kovalent bağ ve iyonik bağ ile birlikte üç güçlü etkileşimden (bağ) biridir. Kimyasal bir etkileşimdir.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

<span class="mw-page-title-main">Bileşik</span> Kimyasal olarak bağlanmış birden fazla elementten oluşan madde

Kimyasal bileşik, kimyasal bağlarla bir arada tutulan birden fazla kimyasal elementin atomlarını içeren birçok özdeş molekülden oluşan kimyasal maddedir. Dolayısıyla tek bir elementin atomlarından oluşan bir molekül bileşik değildir. Bir bileşik, diğer maddelerle etkileşimi içerebilen kimyasal reaksiyonla farklı bir maddeye dönüştürülebilir. Bu süreçte atomlar arasındaki bağlar kırılabilir ve/veya yeni bağlar oluşabilir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Atom yarıçapı</span> Atomun çekirdeği ile elektron bulut arasındaki uzaklık

Atom yarıçapı, küre şeklinde olduğu düşünülen atomların büyüklüklerini ölçmekte kullanılan bir niceliktir. Bu nicelik bir atomun çekirdeği ile elektron bulutu arasındaki uzaklığı ifade eder.

Koordine kovalent bağ, ametal-ligand arasındaki bağın, sadece ligand üzerindeki elektronlar ile oluşması durumunda oluşan kovalent bağ türü. Elektron ortaklaşması göstermemektedir.

<span class="mw-page-title-main">Aromatiklik</span>

Organik kimyada bazı atom halkalarının yapısı beklenenin üstünde kararlıdır. Doymamış bağlar, yalın elektron çiftleri veya boş orbitallerden oluşan konjüge bir halkanın konjüge olmasından beklenecek kararlılıktan daha yüksek bir kararlılık gösterme özelliğine aromatiklik denir. Aromatiklik, halkasal delokalizasyon ve rezonansın bir belirtisi olarak da düşünülebilir.

Değerlik kabuğu elektron çifti itmesi kuralları moleküllerin şekillerini tahmin etmede kullanılır ve değerlik elektron çiftlerinin birbirlerini elektrostatik kuvvetle itmesi temeline dayanır. Teorinin yaratıcısı olan bilim adamlarına atfen Gillespie–Nyholm teorisi olarak da adlandırılır. "VSEPR" kısaltması kimi zaman "vespır" olarak da telaffuz edilebilir.
Teoriye göre atomları çevreleyen değerlik elektron çiftleri birbirlerini iterek aralarındaki itme kuvvetini en aza indirirler ve böylece moleküle şeklini verirler. Merkez atoma bağlı atomların sayısı ile bağ yapmamış elektron çiftlerinin sayısının toplamı sterik numarayı verir.

Moleküller arası kuvvet, komşu parçacıklar arasında etkili çekim veya itme kuvvetidir. Molekülleri bir arada tutan iç kuvvetlere kıyasla daha zayıftır. Örneğin HCI moleküllerinin içinde bulunan kovalent bağ, birbirine yeterince yakın komşu moleküller arasında mevcut olan kuvvetlerden daha güçlüdür.

Kübik atom modeli Elektronların kutupsuz atomlar veya moleküller olarak bir küpün 8 köşesine sıralandığı bir atom modelidir. Bu teori 1902'de Gilbert Newton Lewis tarafından geliştirilmiştir.1916'da "The Atom and Molecule" (Atom ve Molekül" adlı makalede yayınlanmıştır ve Değerlik olgusunu açıklamak için kullanılmıştır. Lewis'in teorisi Abegg'in kuralına dayanıyordu. Irving Langmuir bunu 1919'da geliştirerek "cubical octet atom" modeli haline getirmiştir. Aşağıdaki resim, Periyodik tablonun ikinci satırındaki elementler için yapısal gösterimleri göstermektedir.

<span class="mw-page-title-main">Yöresizleşmiş elektron</span> bir katı metal, iyon veya molekülde bulunan elektronların tek bir atom veya kovalent bağ ile ilişkili olmaması

Yöresizleşmiş elektronlar veya delokalize elektronlar bir katı metal, iyon veya molekülde bulunan elektronların tek bir atom veya kovalent bağ ile ilişkili olmamasını tanımlar.

<span class="mw-page-title-main">Doğrusal molekül geometrisi</span>

Kimyada, doğrusal moleküler geometri 180°'lik bir açıya yerleştirilmiş diğer iki atoma bağlanmış merkezi bir atom etrafındaki geometriyi tarif eder. Asetilen (HC≡CH) gibi doğrusal organik moleküller genellikle karbon merkezleri için sp orbital hibridizasyonu teşvik edilerek tarif edilir.

<span class="mw-page-title-main">Açısal moleküler geometri</span>

Kimyada, " açısal" ya da "bükülmüş" terimi bazı moleküllere moleküler geometrilerini tanımlamak için kullanılabilir. Oksijen gibi bazı atomlar, Elektron dizilimi nedeniyle hemen hemen her zaman iki (veya daha fazla) kovalent bağını doğrusal olmayan yönlerde ayarlarlar. Su (H2O), analoglarının yanı sıra açısal bir molekül örneğidir. İki hidrojen atomu arasındaki bağ açısı yaklaşık olarak 104,45°'dir. Doğrusal olmayan geometri genel olarak sadece ana grup elementleri içeren diğer üç atomlu molekülleri ve iyonlar için gözlemlenir, belirgin örnekler: Azot dioksit (NO2), kükürt diklorür (SCL2) ve metilen (CH2).

<span class="mw-page-title-main">Dörtyüzlü moleküler geometri</span>

Dörtyüzlü veya tetrahedral molekül geometrisi, merkezi atomun, dört yüzlünün ortasında, dört köşede ise sübstitüentlerin yer aldığı molekül geometrisidir. Bağ açıları, dört sübstitüent aynı olduğunda (örn. metan CH4 ya da daha ağır analogları) cos−1 (-⅓) = 109,4712206 ...° ≈ 109.5° olur. Metan veya diğer simetrik yüzlü moleküller Td nokta grubuna aittir, ama dörtyüzlü moleküller genellikle düşük simetriye sahiptir. Tetrahedral moleküller kiral olabilir.

<span class="mw-page-title-main">İkili bağ</span> dört bağ elektronu içeren kimyasal bağ; bir sigma artı bir pi bağı vardır

Kimyada ikili bağ veya çift bağ, iki atom arasında, tekli bağdaki iki elektrona karşılık dört bağ elektronu içeren kovalent bir bağdır. İkili bağlar en yaygın olarak iki karbon atomu arasında, örneğin alkenlerde meydana gelir. Birçok ikili bağ iki farklı element arasında bulunur: örneğin, bir karbon atomu ile bir oksijen atomu arasındaki bir karbonil grubunda. Diğer yaygın ikili bağlar azo bileşiklerinde (N=N), iminlerde (C=N) ve sülfoksitlerde (S=O) bulunur. Bir iskelet formülünde, bir ikili bağ, bağlı iki atom arasında iki paralel çizgi (=) olarak çizilir; tipografik olarak bunun için eşittir işareti kullanılır. İkili bağlar kimyasal gösterimde Rus kimyager Alexander Butlerov tarafından tanıtılmıştır.