İçeriğe atla

Koni hücreleri

Koni Hücreleri
İnsan koni hücrelerinin normalleştirilmiş spektrumları, S, M ve L tipleri

Koni hücreleri veya koniler, insan gözü de dahil olmak üzere birçok omurgalının gözlerinin retinalarındaki fotoreseptör hücrelerdir. Farklı dalga boylarındaki ışığa farklı tepki verirler ve bu nedenle renkli görmeden sorumludurlar. Loş ışıkta daha iyi çalışan çubuk hücrelerin aksine, nispeten parlak ışıkta en iyi şekilde çalışırlar. Koni hücreleri, retinanın çevresine doğru, sayıları hızla azalan çok ince, yoğun şekilde paketlenmiş konilere sahip 0,3 mm çapında çubuksuz bir alan olan fovea centralis'te yoğun bir şekilde toplanmıştır. Optik diskte bulunmazlar ve kör noktaya katkıda bulunurlar. İnsan gözünde yaklaşık altı ila yedi milyon koni vardır ve bunlar en çok sarı beneğe doğru yoğunlaşmıştır.[1]

Koni hücreleri, retinadaki çubuk hücrelerine (düşük ışık seviyelerinde görmeyi destekleyen) göre ışığa daha az duyarlıdır, ancak renk algısına izin verir. Ayrıca, uyaranlara tepki süreleri çubuklardan daha hızlı olduğu için daha ince ayrıntıları ve görüntülerdeki daha hızlı değişiklikleri algılayabilirler. Koniler normalde her biri farklı pigmente sahip üç tipten oluşur: S-konileri, M-konileri ve L-konileri. Bu nedenle her koni, kısa dalga boylu, orta dalga boylu ve uzun dalga boylu ışığa karşılık gelen görünür ışık dalga boylarına duyarlıdır.[2] İnsanlar genellikle farklı tepki eğrilerine sahip olan ve bu nedenle renk varyasyonlarına farklı şekillerde tepki veren farklı fotopsinlere sahip üç tür koniye sahip olduklarından, trikromatik görüşe sahiptir. Renk körü olmak bunu değiştirebilir ve dört veya daha fazla türde konisi olan ve onlara tetrakromatik görüş sağlayan bazı doğrulanmış raporlar bulunmaktadır.[3][4] Işığı tespit etmekten sorumlu olan üç pigmentin, genetik mutasyon nedeniyle tam kimyasal bileşimlerinde değişiklik gösterdiği anlaşılmıştır. Farklı bireylerin farklı renk duyarlılığına sahip konileri bulunacaktır.

Yapısı

Türleri

İnsanlarda normalde üç tip koni bulunur. İlki, yaklaşık 560 nm'de zirve yapan daha uzun dalga boylarındaki ışığa en çok tepki verir. Bu tip bazen L olarak adlandırılır; insan konilerinin çoğu uzun tiptedir. En yaygın ikinci tür, orta dalga boyundaki ışığa en çok yanıt verendir. 530 nm'de zirve yapar ve orta için M olarak kısaltılır ve insan gözündeki konilerin yaklaşık üçte birini oluşturur. Üçüncü tip, 420 nm'de zirve yapan kısa dalga boylu ışığa en çok tepki verendir. Kısaca S olarak adlandırılır ve bunlar insan retinasındaki konilerin yalnızca %2'sini oluşturur. Üç tür, kişiye bağlı olarak sırasıyla 564-580 nm, 534-545 nm ve 420-440 nm aralığında tepe dalga boylarına sahiptir. Böyle bir fark, sırasıyla OPN1LW, OPN1MW, OPN1SW taşıdıkları farklı opsinlerden kaynaklanır. CIE 1931 renk uzayı, ortalama bir insanın üç hücresinin spektral duyarlılıklarında sıklıkla kullanılan bir modelidir.[5][6]

Hem çubuk hem de koni hücrelerine bağlanan karışık tipte bipolar hücrelerin olduğu keşfedilmiş olsa da, bipolar hücreler girdilerini hâlâ ağırlıklı olarak koni hücrelerinden almaktadır.[7]

Şekil

Koni hücresinin yapısı

Koni hücreleri, çubuklardan biraz daha kısadır, ancak daha geniş ve sivridir. Retinanın çoğu kısmındaki çubuklardan çok daha az sayıdadır, ancak foveadaki çubuklardan çok daha fazladır. Yapısal olarak, koni hücrelerinin bir ucunda bir pigmentin gelen ışığı filtrelediği ve onlara farklı tepki eğrileri verdiği koni benzeri bir şekle sahiptir. Tipik olarak 40-50 µm uzunluğundadırlar ve çapları 0,5 ila 4,0 µm arasında değişir. En küçük ve en sıkı şekilde gözün merkezinde foveada paketlenirler. S koni aralığı diğerlerinden biraz daha büyüktür.[8]

Koni düzenini belirlemek için fotoağartma kullanılabilir. Bu, karanlığa adapte edilmiş retinayı, o dalga boyuna duyarlı belirli bir koni tipini, karanlığa adapte olabilmekten otuz dakikaya kadar felç eden belirli bir dalga boyuna maruz bırakarak yapılır. Sonuçlar, S konilerinin rastgele yerleştirildiğini ve M ve L konilerinden çok daha az sıklıkta göründüğünü göstermektedir. M ve L konilerinin oranı, düzenli görüşe sahip farklı kişiler arasında büyük ölçüde değişmektedir (örneğin, iki erkek denekte %20,0 M ile %75,8 L ve %50,6 L ve %44,2 M değerleri alınmıştır).[9]

Çubuklar gibi, her koni hücresinin bir sinaptik terminali, bir iç bölümü, bir dış bölümü ile bir iç çekirdeği ve çeşitli mitokondrileri vardır. Sinaptik terminal, bipolar hücre gibi bir nöronla bir sinaps oluşturur. İç ve dış segmentler bir siliyer ile bağlanır. İç kısım organelleri ve hücre çekirdeğini içerirken, gözün arkasına doğru bakan dış kısım ışık soğuran maddeleri içerir.

Çubuklardan farklı olarak, konilerin dış bölümleri, hücre zarlarında zarlı disk yığınları oluşturan invaginasyonlara sahiptir. Fotopigmentler, ışığın pigmentleri etkilemesi için daha fazla yüzey alanı sağlayan bu diskler içinde transmembran proteinler olarak bulunur. Konilerde, bu diskler dış zara bağlıyken, sıkıştırılırlar. Çubuklarda ise ayrı olarak bulunurlar. Ne çubuklar ne de koniler bölünmez, ancak membranöz diskleri, fagositik hücreler tarafından tüketilmek ve geri dönüştürülmek üzere dış segmentin sonunda tüketilir.

Fonksiyon

Kuş ve sürüngen koni hücreleri

Üç koni türünden alınan sinyallerdeki fark, beynin rakip renk görme süreci aracılığıyla sürekli bir renk aralığını algılamasını sağlar. (Çubuk hücreler, 498 nm'de, kabaca S ve M konilerinin tepe duyarlılıklarının tam ortasında bir tepe duyarlılığına sahiptir.)

Reseptörlerin tümü, absorbe edilen optimum dalga boylarında farklılıklara neden olan konformasyonundaki değişikliklerle birlikte protein fotopsini içerir.

Örneğin sarı renk, L konileri M konilerinden biraz daha fazla uyarıldığında algılanır ve L konileri M konilerinden biraz daha fazla uyarıldığında kırmızı renk algılanır. Benzer şekilde, S reseptörü daha fazla uyarıldığında mavi ve mor tonlar algılanır. SS Konileri, 420 nm civarındaki dalga boylarında ışığa en duyarlıdır. Bununla birlikte, insan gözünün merceği ve korneası giderek daha kısa dalga boylarını soğurur ve bu, insan tarafından görülebilen ışığın kısa dalga boyu sınırını yaklaşık 380 nm'ye ayarlar, bu nedenle "ultraviyole" ışık olarak adlandırılır. Gözün bir merceğinin olmadığı durumlarda bulunan afaki hastalar, bazen ultraviyole aralığını görme yeteneğini bildirir.[10] Konilerin çalıştığı orta ila parlak ışık seviyelerinde, göz sarımsı-yeşil ışığa diğer renklerden daha duyarlıdır çünkü bu, üç çeşit koniden en yaygın olan ikisini (M ve L) neredeyse eşit şekilde uyarır. Yalnızca çubuk hücrelerin işlev gördüğü daha düşük ışık seviyelerinde, duyarlılık mavimsi-yeşil bir dalga boyunda en yüksektir.

Koniler ayrıca önemli ölçüde yüksek bir görme keskinliğine sahip olma eğilimindedir, çünkü her bir koni hücresinin optik sinirle yalnız bir bağlantısı vardır, bu nedenle konilerin iki uyaranın izole edildiğini söylemesi daha mantıklı olur. Her bağlantı paralel olacak şekilde iç pleksiform katmanda ayrı ayrı bağlantı kurulur.[7]

Koni hücrelerinin ışığa tepkisi de, gözbebeğinin merkezinden ışık alan bir yönde zirve yaparak, yönsel olarak düzensizdir; bu etki Stiles-Crawford etkisi olarak bilinir.

S konilerinin sirkadiyen sistemin düzenlenmesinde ve melatonin salgılanmasında rol oynaması olasıdır ancak bu rol henüz netlik kazanmamıştır.[11]

Renk

Uzun süreli bir uyarıya karşı duyarlılık, zamanla azalma eğilimi gösterir ve bu da sinirsel adaptasyona yol açar. Belirli bir renge bir dakika kadar baktığınızda ilginç bir etki oluşur. Bu tür bir eylem, o renge tepki veren koni hücrelerinin tükenmesine yol açar ve sonuçta görüntü izi oluşur. Bu canlı renk etkisi bir dakika veya daha fazla sürebilir.[12]

Klinik önemi

Retinada bulunan koni hücreleri ile ilgili hastalıklardan biri de retinoblastomdur. Retinoblastom, retinoblastoma genlerinin (RB1) her iki kopyasının mutasyonunun neden olduğu, retinanın nadir görülen bir kanseridir. Çoğu retinoblastom vakası erken çocukluk döneminde ortaya çıkar.[13] Bir veya iki göz etkilenebilir. RB1 tarafından kodlanan protein, normal olarak hücre döngüsü ilerlemesini kontrol ederken bir sinyal iletim yolunu düzenler. Retinoblastom, retinada bulunan ve hücre ölümünü kısıtlayan ve RB1'i kaybettikten sonra hücrenin hayatta kalmasını destekleyen veya her iki RB1 kopyasının mutasyona uğramasını sağlayan doğal sinyal ağlarından oluşan koni öncü hücrelerinden kaynaklanıyor gibi görünmektedir. Konilere spesifik olarak bağlı bir transkripsiyon faktörü olan TRβ2'nin hızlı üreme ve retinoblastom hücresinin varlığı için gerekli olduğu bulunmuştur.[13] Bu hastalığın tedavisinde faydalı olabilecek bir ilaç MDM2 (murine double minute 2) genidir. Knockdown çalışmaları, MDM2 geninin retinoblastoma hücrelerinde ARF kaynaklı apoptozu susturduğunu ve MDM2'nin koni hücrelerinin hayatta kalması için gerekli olduğunu göstermiştir.[13] Bu noktada insanlarda retinoblastomun neden RB1 inaktivasyonuna duyarlı olduğu açık değildir.

Flaşla çekilen fotoğraflarda genellikle flaştan kaynaklanan tipik "kırmızı göz" yerine gözde beyaz bir parıltı görülür ve göz bebeği beyaz veya bozuk görünebilir. Diğer belirtiler arasında şaşılık, çift görme, aynı hizada olmayan gözler, göz ağrısı ve kızarıklık, zayıf görme veya her bir gözde farklı iris renkleri sayılabilir. Kanser yayıldıysa, kemik ağrısı ve diğer semptomlar ortaya çıkabilir.[13][14]

Kaynakça

  1. ^ "The Rods and Cones of the Human Eye". 28 Ekim 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Haziran 2021. 
  2. ^ Schacter, Gilbert, Wegner, "Psychology", New York: Worth Publishers,2009.
  3. ^ "You won't believe your eyes: The mysteries of sight revealed". The Independent. 7 Mart 2007. 6 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Ağustos 2009. 
  4. ^ Mark Roth (13 Eylül 2006). "Some women may see 100,000,000 colors, thanks to their genes". Pittsburgh Post-Gazette. 8 Kasım 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Haziran 2021. 
  5. ^ Wyszecki, Günther; Stiles, W.S. (1981). Color Science: Concepts and Methods, Quantitative Data and Formulae (2. bas.). New York: Wiley Series in Pure and Applied Optics. ISBN 978-0-471-02106-3. 
  6. ^ R. W. G. Hunt (2004). The Reproduction of Colour (6. bas.). Chichester UK: Wiley–IS&T Series in Imaging Science and Technology. ss. 11-12. ISBN 978-0-470-02425-6. 
  7. ^ a b Strettoi, E; Novelli, E; Mazzoni, F; Barone, I; Damiani, D (Jul 2010). "Complexity of retinal cone bipolar cells". Progress in Retinal and Eye Research. 29 (4): 272-83. doi:10.1016/j.preteyeres.2010.03.005. PMC 2878852 $2. PMID 20362067. 
  8. ^ Brian A. Wandel (1995). "Foundations of Vision". 5 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Temmuz 2015. 
  9. ^ Roorda A.; Williams D.R. (1999). "The arrangement of the three cone classes in the living human eye". Nature. 397 (6719): 520-522. Bibcode:1999Natur.397..520R. doi:10.1038/17383. PMID 10028967. 
  10. ^ Let the light shine in: You don't have to come from another planet to see ultraviolet light 25 Temmuz 2008 tarihinde Wayback Machine sitesinde arşivlendi. EducationGuardian.co.uk, David Hambling (May 30, 2002)
  11. ^ Soca, R. "S-cones and the circadian system- Review of the literature". 14 Şubat 2021 tarihinde kaynağından arşivlendi. 
  12. ^ Schacter, Daniel L. Psychology: the second edition. Chapter 4.9.
  13. ^ a b c d Skinner, Mhairi (2009). "Tumorigenesis: Cone cells set the stage". Nature Reviews Cancer. 9 (8): 534. doi:10.1038/nrc2710. 
  14. ^ "Retinoblastoma". A.D.A.M. Medical Encyclopedia. 8 Ağustos 2018 tarihinde |arşiv-url= kullanmak için |url= gerekiyor (yardım) arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

<span class="mw-page-title-main">Renk körlüğü</span> Hastalık çeşidi

Renk körlüğü bir canlının görme merkezinde özel bir pigment molekülünün bulunmaması veya gerektiğinden az bulunmasıdır. Bu eksiklik sonucunda çeşitli renklerin çevresindeki renkler ayırt edilemez.

Retina (latince:rete) ya da ağkatman çoğu omurgalı ve bazı yumuşakçaların gözünün en içindeki görmeyi sağlayan ışığa ve renge duyarlı hücrelerin bulunduğu göz doku tabakasıdır. Gözün optiği, retinadaki görsel dünyanın odaklanmış iki boyutlu bir görüntü oluşturur ve bu görüntüyü beyne elektriksel sinir uyarılarına çevirerek görsel algı oluşturur. Retina, bir kameradaki film veya görüntü sensörü 'ne benzer bir iş yapar.

<span class="mw-page-title-main">Pigment</span>

Pigment ya da boyar madde, suda tamamen veya hemen hemen çözünmeyen renkli bir malzemedir. Bunun tersine, boyalar genelde, en azından kullanımlarının bir aşamasında çözünürdür. Boyalar genellikle organik bileşik pigmentler ise genellikle inorganik bileşikdir. Tarih öncesi ve tarihi değeri olan pigmentler arasında koyu sarı, odun kömürü ve lapis lazuli bulunur. Sanayide olduğu kadar sanatta da kalıcılık ve istikrar istenen özelliklerdir. Kalıcı olmayan pigmentler kaçak olarak adlandırılır. Kaçak pigmentler zamanla veya ışığa maruz kaldıkça solarken bazıları sonunda kararır. Pigmentler boya, mürekkep, plastik, kumaş, kozmetik, gıda ve diğer malzemeleri renklendirmede kullanılır. İmalat ve görsel sanatlarda kullanılan çoğu pigment kuru renklendiricidir ve genellikle ince bir toz hâlinde öğütülür. Boyada kullanım için bu toz, pigmenti askıya alan görece nötr veya renksiz bir malzeme olan bağlayıcıya eklenir ve boyaya yapışkanlık verir. Genellikle aracında çözünmez olan bir pigment ile kendisi bir sıvı olan veya aracında çözünen boya arasında bir ayrım yapılır. Renklendirici, ilgili araca bağlı olarak bir pigment veya bir boya görevi görebilir. Bazı durumlarda pigment, bir metalik tuzla çözülebilir bir boyanın çökeltmesi ile boyadan üretilebilir. Oluşan pigmente göl pigmenti denir. Biyolojik pigment terimi, çözünürlüklerinden bağımsız olarak tüm renkli maddeler için kullanılır.

<span class="mw-page-title-main">Kızılötesi fotoğraf</span> Fotoğraflama türü

Kızılötesi fotoğraf, kızılötesi ışınlara duyarlı sensörlerle, kamera filtreleriyle veya filmlerle pozlanmış fotoğraflara denir.

<span class="mw-page-title-main">Göz</span> görme organı

Göz, göz çukurunda bulunan, iri bir bilye büyüklüğünde, görmeyi sağlayan küremsi bir organdır.

Ultraviyole (UV) veya morötesi; dalga boyu görünür ışıktan kısa, ancak X-ışınlarından uzun olan bir elektromanyetik radyasyon şeklidir. Güneş ışığında bulunur ve Güneş'ten çıkan toplam elektromanyetik radyasyonun yaklaşık %10'unu oluşturur. Ayrıca elektrik arkları, Çerenkov radyasyonu, cıva buharlı lambalar, bronzlaşma lambaları ve siyah ışık gibi kaynaklar tarafından üretilir. Uzun dalga boylu UV fotonları atomları iyonize edecek enerjiye sahip olmadığı için iyonlaştırıcı bir radyasyon olarak kabul edilmese de, kimyasal reaksiyonlara neden olabilir ve birçok maddenin parlamasına neden olabilir. Kimyasal ve biyolojik etkiler de dahil olmak üzere pek çok pratik uygulama, UV radyasyonunun organik moleküllerle etkileşime girmesinden türer. Bu etkileşimler emilimi veya ısıtma dahil moleküllerdeki enerji durumlarının ayarlanmasını içerebilir.

<span class="mw-page-title-main">Gece körlüğü</span> göz hastalığı

Retinitis pigmentosa (RP), halk arasında tavuk karası ve gece körlüğü adlarıyla bilinen ve görme kaybına neden olan genetik bir göz hastalığıdır. Her 4.000 kişide 1'i etkilediği tahmin edilmektedir.

Işık akısı bir fiziksel niceliktir ve insan gözünün algıladığı ışık gücünün miktarını ifade eder. Bu tariften de anlaşıldığı gibi, ışık akısı hem ışınım yapan kaynağın gücüne hem de insan gözünün özelliğine bağlıdır. SI birimi MKS sisteminde lumen dir.

Işık, bir enerji çeşididir. Sabit kütleli sis­temlerde enerji yoktan var edilemez. Ancak bir biçimden diğerine dönüşebilir. Bu yüzden ışık, yalnızca enerjinin bir başka biçiminin dönüştürülmesiyle elde edilir. Elektrik enerjisi bir elektrik lambasında ya da deşarj tüpünde ışığa dönüştürülür. Kimyasal enerji ve ateşböceği gibi ışık saçan hayvanlarda ışığa dönüşür. Bu dönüşüm ters yönde de olabilir. Örneğin bir fotoelektrik hücrede ışık elektrik enerjisi üretir.

Işık gözün algıladığı elektromanyetik ışınıma verilen isimdir. Işık gücünün toplam elektromanyetik ışınım gücüne olan oranı ise Batı dillerinde efficacy olarak adlandırılır. Bu terim dilimize ışık verimliliği ya da ışık etkinliği olarak çevrilebilir. Elektromanyetik ışınımın kızılötesi ve morötesi kısımları aydınlatma için kullanılamaz. Bir kaynağın tam ışık verimi, elektromanyetik ışınımın insan gözü tarafından ne derece algılandığı ile ilgilidir.

<span class="mw-page-title-main">Kandela</span> ışık şiddeti birimi

Kandela, Işık şiddeti birimidir. Uluslararası SI sistemindeki 7 temel birimden biridir..

<span class="mw-page-title-main">Gözün evrimi</span>

Gözün evrimi, taksonlarda geniş ölçekte rastlanan özel bir homolog organ örneği olarak anlamlı bir çalışma konusudur. Gözün görsel pigmentler gibi bazı bileşenleri ortak bir atadan geliyor gibidir. Yani bu pigmentler, hayvanlar farklı dallara ayrılmadan evvel evrimlerini tamamlamıştır. Bununla birlikte görüntü oluşturma yeteneğine sahip, karmaşık gözler, aynı proteinler ve genetik malzeme kullanılarak birbirinden bağımsız olarak 50 ila 100 kere evrimleşmiştir.

<span class="mw-page-title-main">Karanlık</span>

Karanlık, aydınlığın karşıtı ve görünür ışığın bulunmaması durumu. Renk alanında siyahın oluşturduğu görüntüdür. Işık olmadığında gözdeki çubuk ve koni hücreleri uyarılmazlar. Bu uyarım eksikliği nedeniyle fotoreseptör hücreler; frekans ve dalgaboyunu ayırt edemezler. Oluşan son algı grimsi ya da karanlık olarak tanımlanan siyahtır. İnsanların karanlığa verdikleri tepki birçok kültürde yere sahiptir.

Görsel algı çevredeki objelerin görülebilir spektruma yansıttığı ışığı kullanarak çevreyi yorumlayabilme yeteneğidir. Bu, etrafı ne kadar net görmeyi ifade eden görsel keskinlikten farklıdır. Bir kişi 20/20 vizyonu olsa bile görsel algısal işleme ile ilgili problemler yaşayabilir.

<span class="mw-page-title-main">Fotoreseptör hücre</span>

Fotoreseptör hücre retinada bulunan ve ışığı elektrik sinyallerine dönüştürebilen özelleşmiş bir nöron tipidir. Fotoreseptör hücrelerin biyolojik olarak önemi ışığı yani görülebilir elektromanyetik radyasyonu çevirdikleri sinyallerle biyolojik süreçleri harekete geçirebilmeleridir. Hücrede bulunan fotoreseptör proteinler fotonları soğurarak hücrenin zar potansiyelinde bir değişiklik meydana getirirler.

<span class="mw-page-title-main">Flexner-Wintersteiner rozeti</span>

Flexner–Wintersteiner rozeti retinoblastom ve diğer bazı oftalmik tümörlerde görülen tekerlek şeklindeki gerçek rozetlerdir. Rozet terimi, güle benzeyen yapı ya da oluşumları temsil eder.

<span class="mw-page-title-main">Çubuk hücreleri</span> Photoreceptor cells that can function in lower light better than cone cells

Çubuk hücreleri, gözün retinasında bulunan ve diğer görsel fotoreseptör tipi olan koni hücrelerinden daha düşük ışıkta daha iyi işlev görebilen fotoreseptör hücrelerdir. Çubuklar genellikle retinanın dış kenarlarında konsantre olarak bulunur ve çevresel görüşte kullanılır. Ortalama olarak, insan retinasında yaklaşık 92 milyon çubuk hücre vardır. Çubuk hücreler, koni hücrelerden daha hassastır ve gece görüşünden neredeyse tamamen sorumludur. Bununla birlikte, çubuk hücrelerinin renk görmede çok az rolü vardır, bu da renklerin loş ışıkta daha az belirgin olmasından kaynaklanmaktadır.

<span class="mw-page-title-main">Çevresel görüş</span> Area of ones field of vision outside of the point of fixation

Çevresel görüş veya dolaylı görme, sabitlenme noktasının dışında, yani bakışın merkezinden uzakta veya geniş açılardan bakıldığında "gözün köşesi" içinde meydana gelen görmedir. Görme alanındaki alanın büyük çoğunluğu çevresel görüş kavramına dahildir. Uzak periferik görüş, görsel alanın kenarlarındaki alanı ifade etmektedir, orta periferik görüş, orta eksantriklikleri ifade etmektedir ve bazen para-merkezi olarak adlandırılan yakın-periferik görüş, görsel alanın bitişiğinde bulunmaktadır.

<span class="mw-page-title-main">Retina yatay hücreleri</span>

Yatay hücreler, omurgalı gözlerinin retinasının iç nükleer tabakasında hücre gövdelerine sahip yanal olarak birbirine bağlanan nöronlardır. Birden fazla fotoreseptör hücresinden gelen girişi entegre etmeye ve düzenlemeye yardımcı olmaktadırlar. İşlevleri arasında, yatay hücrelerin yanal inhibisyon yoluyla kontrastı artırmaktan ve hem parlak hem de loş ışık koşullarına uyum sağlamaktan sorumlu olduğuna inanılmaktadır. Yatay hücreler, çubuk ve koni fotoreseptörlerine engelleyici geri bildirim sağlamaktadır. Retina ganglion hücrelerinin birçok tipinin alıcı alanlarının antagonistik merkez-çevre özelliği için önemli oldukları düşünülmektedir.