İçeriğe atla

Koaksiyel kablo

RG-59
A: Koruyucu dış kılıf
B: İletken örgü (vaya ince varak)
C: Yalıtkan madde
D: İç iletken

Koaksiyel kablo (İngilizce kısaltması coax) radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü (veya ince varak) vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

Öte yandan kablonun iletkenlerden oluşan örgüsünün topraklanmış oluşu çok önemlidir. Çünkü bu sayede kablo elektromanyetik alan oluşturan cihazların yakınından etkilenmeden geçebilir.

Koaksiyel kablonun taşıdığı akım VHF veya UHF gibi çok yüksek frekanslı bir akımdır. Akımın yönü saniyede milyonlarca kez değiştirir. (VHF 30 milyondan 300 milyon Hz de kadar, UHF ise 300 milyondan 3 milyar Hz e kadar olan frekans alanıdır.)

Madde özellikleri

En içte iletken olarak bakır veya diğer iletken metaller kullanılır.

Çevredeki yalıtkanın dielektrik sabiti ve fiziki boyutları (kesit alanı) kablonun bazı elektriksel özelliklerini saptadığı için çok önemlidir. Kablo boyunca dielektrik sabit ve fiziki boyutların değişmemesi gerekir. Genellikle polyethylene (PE) veya Teflon (PTFE) gibi yalıtkanlar kullanılır. Yüksek güç taşımak için üretilmiş kalın kablolarda yalıtkan yerine gaz veya hava kullanıldığı da olur. Ancak bu gibi durumlarda iç ve dış iletkenlerin yanlışlıkla birbirlerine dokunmamaları için, içeride ayırıcı yalıtkan destekler kullanılır.

Dış iletken çoğu kez iletken tellerden yapılmış bir örgüdür. Ancak örgünün iki sorunu vardır. Örgü tellerinin fiziki kalınlığı kablo elektriksel karakteristiklerini etkiler. Ayrıca örgünün çok sık olmaması da taşınabilen frekansa bir üst sınır getirir. Bu sebeple, dış iletken olarak çok ince metal varakların kullanılması tercih edilir. Ancak metal varaklar eğilip bükülmeye örgü kadar uygun değillerdir. Ayrıca bu tercih kablo fiyatını artırabilir.

Koruyucu dış kılıf elektriksek performanstan ziyade kablonun korunması ile ilgilidir. Genellikle PVC gibi bir madde kullanılır. El değmeyecek ve çevreden etkilenmeyecek iç devrelerde dış kılıfa gerek bile yoktur.

Elektriksel karakteristikler

Elektriksel karakterleri hesaplayabilmek için, öncelikle bazı ölçülen değerleri belirtmek gerekir.

  • İç iletkenin çapı, .
  • Dış iletkenin (örgü vb.) iç çapı, .
  • Yalıtkanın dielektrik sabiti, . Bu sabit bağıl dielektrik sabit ile boşluktaki dielektrik sabitin çarpımı olarak gösterilebilir.
. Şayet yalıtkan birden fazla maddenin karışımıyla oluşturulduysa, etkin dielektrik sabiti deyimi kullanılır. (mesela, polyethylene köpük hava ve polyethylene karışımıdır.)
  • Yalıtkanın manyetik geçirgenliği Bu sabit bağıl manyetik geçirgenlik ile boşluktaki manyetik geçirgenliğin çarpımı olarak gösterilebilir.
.

Ancak yalıtkan maddelerde bağıl manyetik geçirgenlik genellikle 1 e çok yakındır.)

Bir koaksiyel kablonun eşdeğer devre elemanlarının şamatik gösterimi.
  • Birim uzunluk için şönt (paralel) kapasitans, birimi farad/metre (F/m)
  • Birim uzunluk için seri direnç, birimi ohm/metre (Ω/m).Alçak frekanslarda bu direnç iletkenlerin birim uzunluktaki dirençleridir ve çok düşüktür. (hemen hemen 0). Yüksek frekanslarda cidar etkisi denilen etki sebebiyle iç iletkenin etkin kesit alanı azaldığından seri direnç de artmaya başlar.
  • Birim uzunluk için şönt (paralel) iletkenlik, birimi siemens/metre (S/m) Yalıtkan özelliğine bağlı olarak iletkenlik te çok küçüktür. (hemen hemen 0). Fakat şönt iletkenlik frekans yükseldikçe artmaya başlar.
Koaksiyel kablonun empedansının şamatik gösterimi .

Karakteristik empedans

Karakteristik empedans yansıma olmaksızın güç transferi yapabilmek için bilinmesi gerekli olan bir karakteristiktir.

Birim uzunluktaki seri direnç ve şönt iletkenlik 0 kabul edilirse,

). L ve C eşdeğerleri ile
.

Burada ln e tabanlı logaritmadır.

Dielektrik katsayı bağıl dielektrik katsayısı cinsinden ifade edilir ve e tabanına göre verilen logaritma on tabanına çevrilirse,

.

[1]

Bu denklem kablo karakteristik empedansının sadece kullanılan yalıtkanın dielektrik katsayısıyla, iç ve dış iletkençaplarına bağlı olduğunu göstermektedir. Uygulamada görüntü sinyali (VF) için kullanılan kablolar 75 Ω radyo frekans (RF) ve ara frekans kabloları ise 50 Ω karakteristik empedansa sahiptir. Anten kablolarında ise 75 Ω ve 300 Ω başta olmak üzere çeşitli empedanslar kullanılır. Kablo üreticisi kataloglarda bu empedansı belirtir.

Sürat ve dalga boyu

Sinyalin kablo içindeki sürati yalıtkanın dielektrik sabiti ve manyetik geçirgenliğine bağlıdır. v sinyal sürati ve c de boşluktaki ışık hızı ise,

Fakat, bağıl manyetik geçirgenlik 1 e yakın olduğu için sürati tayin eden doğrudan bağıl dielektrik katsayıdır.

Dalga boyu elektromanyetik sinyal süratinin frekansa bölünmesi ile bulunur.

Burada f frekans ve λ de dalga boyudur. Sürat parametresi ışık hızı cinsinden ifade edilirse,

Kablo içinde dalgaboyunun boşluktakinden daha kısa oluşu özellikle anten yönlendirilme hesaplarında dikkate alınması gereken bir unsurdur. Üreticinin kablo kataloglarında ya dalga boyunun kısalması ya da dielektrik katsayı verilir.

Zayıflama

Kablo içinde seri direnç ve şönt iletkenlik sebebiyle oluşan zayıflama, şayet uzun kablo ve yüksek frekans kullanılacaksa, dikkate alınması gereken bir planlama kriteridir. İlke olarak kalın kablolarda zayıflama ince kablolardan daha azdır. Zayıflama kablo üreticileri tarafından kataloglarda dB/m veya dB/100 m birimleriyle verilir. Yüksek güç uygulamalarında sadece gücün zayıflaması değil, aynı zamanda kablonun ısınması da dikkate alınmalıdır.

Kritik frekans

Koaksiyel kablolar özellikle yüksek frekanslarda kullanılır. Ancak frekansın alanın üst sınırı vardır. kablo bu sınırın üstünde kullanılmamalıdır.

Kablonun ortalama çapının olduğu dikkate alınırsa,

Bu frekans şu şekilde verilir.

.

Manyetik geçirgenlik 1 e eşitlenirse,

.

Ancak yüksek frekansla ilgili bir sınırlama daha vardır. Yüksek frekanslarda kablo fazla bükülmemelidir. Amprik olarak, kablo bükülme yarıçapı sinyalin kablo içindeki dalga boyundan büyük olmalıdır.

Ayrıca bakınız

  • Boşluğun Empedansı
  • Elektromanyetik alanlar
  • Çift hat

Kaynakça

  1. ^ Elmore, William C. ; Heald, Mark A. :Physics of Waves, 1969

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

Kapasite veya diğer adıyla sığa, bir cismin elektrik yükü depo etme yeteneğidir. Elektrikle yüklenebilen her cisim sığa barındırmaktadır. Enerji depolama aracının en yaygın formu paralel levhalı sığaçlardır. Paralel levhalı sığaçta, sığa iletken levhanın yüzey alanıyla doğru orantılıdır ve levhalar arasındaki uzaklığın ayrımıyla da ters orantılıdır. Eğer levhaların yükleri +q ve –q ise ve V levhalar arasındaki voltajı veriyorsa, sığa C şu şekildedir;

Elektromanyetizmada yalıtkanlık sabiti veya dielektrik sabiti, bir malzemenin üzerinde yük depolayabilme yeteneğini ölçmeye yarayan katsayı. Başka bir ifade ile yalıtkanlık sabiti, bir elektriksel alanın etkilerinin veya yalıtkan bir ortam tarafından nasıl etkilendiğinin ölçümüdür. Bir ortamın yalıtkanlık sabiti, ortamdaki birim yük başına, elektrik alanının ne kadar oluştuğudur. Elektrik akısının bulunduğu bir ortamda, birim yük başına düşen yalıtkanlık sabiti, kutuplanma yoğunluğundan dolayı büyük olur. Yalıtkanlık sabiti, elektriksel alınganlık ile doğrudan ilişkilidir. Bu, bir yalıtkanın kutuplanma yoğunluğunun elektriksel alanı karşı tepkisinin ne derece olduğunu ölçer.

<span class="mw-page-title-main">Dairesel yörünge</span>

Astrodinamikte dışmerkezliği sıfıra eşit olan eliptik yörünge olarak özetlenebilecek dairesel yörünge, tanım olarak fizikte sabit eksen etrafında rotasyonun tipik bir örneğidir. Burada bahsedilen eksen, hareket düzlemine dik olarak kütle merkezlerinden geçen doğrudur.

<span class="mw-page-title-main">Jeostatik yörünge</span> ekvator üstünde bulunup Dünyanın dönüşünü takip eden yörünge

Jeostatik yörünge ya da Yer sabit yörünge, Dünya’nın çevresinde Dünya ile aynı dönme süresine sahip ve yerden bakılınca uzayda konumu sabit olan yapay uydu için hesaplanan yörünge. Yer sabit yörünge için yer yüzeyinden itibaren yükseklik sınırı 35.786 kilometredir. Bu yörüngede yer alan bir cisim, yerdeki sabit bir gözlemciye gökyüzündeki sabit bir nokta şeklinde görülecektir.

Boşluğun empedansı elektromanyetikte başta anten hesapları olmak üzere çeşitli hesaplarda kullanılan bir sabittir. MKS sisteminde birimi ohm dur. (Ω).Tanımı;

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

Açısal frekans periyodik harekette birim zaman içinde kaç radyan olduğunun ölçüsüdür.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

i sayısı

Sanal birim ya da i sayısı, x2 = -1 eşitliğini sağlayan bir sayıdır. Reel sayılar kümesindeki hiçbir sayının karesi negatif olamayacağı için, bu ikinci dereceden denklemi sağlayan fakat reel sayılar kümesine ait olmayan böyle bir sayı, genellikle i notasyonu ile gösterilir. i sayısı, ℝ ile gösterilen reel sayılar kümesini ℂ ile gösterilen kompleks sayılar kümesine genişleten ve sabit olmayan her bir P(x) polinomu için en az bir kök sağlayan matematiksel bir kavramdır. "Hayali" terimi negatif kareye sahip gerçek sayı olmadığı için kullanılır.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Fizikte Planck yükü, Planck birimleri olarak bilinen doğal birimler sisteminde elektriksel yük birimidir ve boyutsuz fiziksel sabit olarak tanımlanır.

Planck gerilimi (VP), Planck birimleri olarak bilinen doğal birimler sisteminde gerilim birimidir.

Planck empedansı (ZP), Planck birimleri olarak bilinen doğal birimler sisteminde elektrik direnci birimidir. Planck empedansı, doğrudan boşluğun empedansına (Z0) bağlıdır ve değeri Z0 bölü 4πdir. Vakum yalıtkanlık sabiti ε0'ı normalleştirmek için, Planck empedansı yerine Coulomb sabiti (1/(4πε0)) değil de Planck yükü kullanılır. Böylece Planck empedansı vakumun empedansının karakteristiğini tanımlayabilir.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

<span class="mw-page-title-main">Yüzey katmanı etkisi</span>

Yüzey katmanı etkisi ; akım yoğunluğu iletkenin yüzeyinin yakınında en büyük olacak şekilde bir iletken içinde dağıtılan bir alternatif elektrik akımı (AC) eğilimidir ve iletkenin derinliklerinde azalır. Elektrik akımı, iletkenin dış yüzeyi ile yüzey derinliği denilen bir derinlik arasında ağırlıklı olarak akar. Yüzey etkisi yüzey derinliğinin küçük olduğu yerlerde yüksek frekanslar için iletkenin direncinin artmasına sebep olur. Böylece, iletkenin kesitinin etkisini azaltır. Deri etkisi alternatif akımdan kaynaklanan değişen manyetik alanın neden olduğu Eddy akımına karşıt kaynaklanmaktadır. 60 Hz'de bakır'ın yüzey derinliği yaklaşık 8,5 mm. Yüksek frekanslarda yüzey derinliği çok daha küçük olur. Yüzey etkisi nedeniyle artan AC direnç özel dokuma litz tel kullanılarak hafifletilebilir. Çünkü büyük bir iletkenin iç akımını çok az taşır. Ayrıca bu tür boru gibi boru şeklinde iletkenler ağırlık ve maliyet tasarrufu için kullanılabilir.

Fiziksel sabit ε0, yaygın olarak vakum geçirgenliği, serbest uzayın geçirgenliği veya elektrik sabiti olarak adlandırılır. Bu ideal fiziksel sabit klasik vakumun dielektrik sabitinin mutlak değeridir. e0 sabitinin sayısal değeri:

e0 = 8.854 187 817... × 10-12 F·m-1 (metre başına farad).
<span class="mw-page-title-main">Çift hat</span>

Çift hat telekomünikasyonda kullanılan bir yüksek frekans kablosudur. Birbirlerinden sabit uzaklıkta iki bakır iletken bir polietilen kılıf içerisindedir. Çift iletken olduğu için, kablo dengelidir. Kablo empedansını ise iki iletken arasındaki uzaklık belirler. En çok kullanılan 300 ohmluk kablolarda iletkenler arası uzaklik 7.5 mm. dir. Bu tip kablolar kıvrık dipol antenler için özellikle uygundur. Çünkü kıvrık dipollerin empedansları 300 ohm dolaylarındadır. Ayrıca dengeli olduklari için bağlantıda bir balun gerekmez.

Elektromanyetizmada Clausius-Mossotti eşitliği, bir malzemenin bağıl geçirgenliğini o malzemeyi oluşturan atom veya moleküllerin kutuplanabilirliği ile ilişkilendirir. İsmini Ottaviano-Fabrizio Mossotti ve Rudolf Clausius'lerden almaktadır. Eşitlik,