İçeriğe atla

Koşullu olasılık

Koşullu olasılık kavramı, bir olayın gerçekleşme olasılığının hesaplanmasında ek bilginin kullanılmasına olanak tanır. Örneğin bir kişinin iki çocuğu olduğunu düşünürsek, her ikisinin de kız olma olasılığı 1/4 olur. Ancak birinin kız olduğunu önceden bilirsek, bu olasılık 1/3 olarak değişir. Ama herhangi biri değil de birincisi (yaşça büyük olan) kız olduğu biliniyorsa olasılık 1/2 olur. Yani bu iki durumda, her iki çocuğun da kız olma olasılığı, birinin kız olması koşullu olarak hesaplanır .

Tanım

Olasılık kuramında, A olayının, bir diğer B olayına koşullu olasılığı (veya B biliniyorken A'nın olasılığı), P(A | B) olarak tanımlanır;

Aynı kavramı ifade etmek için PB(A) hali de kullanılabilir. Bu tanımda veya P(A,B), A ile B olaylarının ortak olasılıklarını, yani her ikisinin de gerçekleşme olasılığını ifade eder.

Bağımsız olaylar

A ve B olayları birbirlerinden bağımsız olduklarında, birinin gerçekleştiğini bilmek doğal olarak diğerinın olasılık hesabına etki etmez. Bu durumda ortak olasılıkları basit bir çarpım halini alır:

dolayısıyla:

ve

Birbirini dışlayan olaylar

Bu durumda, her iki olayın birlikte gerçekleşme olasılığı sıfırlanır. Yani

Dolayısıyla:

ve

Ayrıca bakınız

İlgili Araştırma Makaleleri

Ortak olasılık veya birleşik olasılık kavramı, iki A ve B olayının birlikte gerçekleşme olasılığını ifade eder. veya P(A,B) ile gösterilir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Olasılık kuramı içinde, toplam olasılık yasası şöyle ifade edilir:

A için önsel (marjinal) olasılık, A' nın sonsal (koşullu) olasılığının beklenen değerine eşittir

Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık teorisinde Kolmogorov aksiyomları, temel üç aksiyomdur. Belirli bir E olayı için P olasılığı varken matematik notasyonla olarak ifade edilirken Kolmogorov aksiyomlarını tatmin etmesi temeline bağlanmıştır. Bu aksiyomlar, ilk defa 20. yüzyılda Rus istatistikçisi Andrey Kolmogorov tarafından ortaya atılmıştır.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

Olasılık kuramında Borel–Cantelli önermesi olay dizilerine ilişkin bir savdır. Ölçü kuramının bir sonucu olan önerme Émile Borel ve Francesco Paolo Cantelli'ye adanmıştır.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

<span class="mw-page-title-main">Naive Bayes sınıflandırıcısı</span>

Naïve Bayes sınıflandırıcı, örüntü tanıma problemine ilk bakışta oldukça kısıtlayıcı görülen bir önerme ile kullanılabilen olasılıksal bir yaklaşımdır. Bu önerme, örüntü tanımada kullanılacak her bir tanımlayıcı öznitelik ya da parametrenin istatistik açıdan bağımsız olması gerekliliğidir. Her ne kadar bu önerme Naive Bayes sınıflandırıcının kullanım alanını kısıtlasa da istatistik bağımsızlık koşulu esnetilerek kullanıldığında da daha karmaşık yapay sinir ağları gibi metotlarla karşılaştırabilir sonuçlar vermektedir. Bir Naive Bayes sınıflandırıcı, her özniteliğin birbirinden koşulsal bağımsız olduğu ve öğrenilmek istenen kavramın tüm bu özniteliklere koşulsal bağlı olduğu bir Bayes ağı olarak da düşünülebilir.

Önsel olasılık*, Bayesci İstatistikte gözlemlere atıf yapmadan önce değerlendirilen özellikle öznel olabilen olasılıktır. Tecrübeye dayalı olasılık olarak da adlandırılır. Örneğin bir hasta hekim ziyaretinde yorgunluktan şikayet ediyor ve böbrek taşı geçmişi var. Fakat paratiroid hastalığını işaret eden başka fiziksel belirtileri (semptomlar) yok. Bu durumda hekim hastanın hiperparatiroidizm olma olasılığının düşük olduğuna karar verir. Bu örnekte hekimin kullandığı olasılık gözlemlere önsel 'dir dolayısıyla önsel olasılıktır. Önsel olasılık istatistikte tanı testlerinin değerlendirilmesinde kullanılır.

<span class="mw-page-title-main">Doğum günü problemi</span>

Olasılık teorisinde, doğum günü problemi veya doğum günü paradoksu, n adet rastgele seçilmiş kişiden oluşan bir grup içindeki bazı çiftlerin doğum gününün aynı olma olasılığını inceler. Güvercin deliği ilkesine göre, kişi sayısı 367'ye ulaştığında olasılık %100'e ulaşır fakat, %99,9 olasılığa sadece 70 kişi ile ve %50 olasılığa 23 kişi ile ulaşılır. Bu sonuçlar, yılın her gününün eşit derecede olası bir doğum günü olduğu varsayımına dayanır.

<span class="mw-page-title-main">Bayes ağı</span>

Bir Bayes ağı, Bayes modeli ya da olasılıksal yönlü dönüşsüz çizge modeli bir olasılıksal çizge modelidir ve birbirleriyle koşulsal bağımlılıklara sahip bir rassal değişkenler kümesini yönlü dönüşsüz çizge(YDÇ) şeklinde ifade eder. Bayes ağları; gündelik hayatta meydana gelen bir olayı anlatmak ve o olayın gerçekleşmesine sebebiyet verebileceği bilinen birkaç olası nedenden herhangi birinin katkıda bulunan faktör olma olasılığını tahmin etmek için kullanılan ideal bir modelleme türüdür. Örneğin, bir Bayes ağı kullanılarak hastalıklar ve semptomları arasındaki olasılıksal koşul ilişkileri modellenebilir. Bu model kullanılarak, bir kişide görülen semptomlar verildiğinde bu kişinin bazı hastalıklara sahip olma olasılıkları hesaplanabilir. Buna benzer olarak neden-sonuç ilişkisi olan birçok olayın olasılığı bu modelleme ile görselleştirilebilir.

Olasılık teorisinde, tümleyen olay', bir A olayının gerçekleşmeme durumudur. Bir A olayının tümleyeni A′, Ac, A ya da A şeklinde gösterilebilir. A olayı ve onun tümleyeni A karşılıklı dışarlayan ve kapsayıcıdır. Genellikle bu iki özelliği birden sağlayan yalnızca bir B olayı vardır, bu olay Anın tümleyenidir. Bir olay ve onun tümleyeni Bernoulli denemesini tanımlar; yani olay ya 'gerçekleşir' ya da 'gerçekleşmez'.

<span class="mw-page-title-main">Bayesci istatistik</span>

Bayesci istatistik, Bayesyen istatistik veya Bayesgil istatistik, olasılığın bir olaya olan inancın bir derecesini ifade ettiği Bayesci olasılık yorumuna dayanan istatistik alanındaki bir teoridir. İnanç derecesi, önceki deneylerin sonuçları gibi olay hakkında önceki bilgilere veya olayla ilgili kişisel inançlara dayanabilir. Bu, olasılığı birçok denemeden sonra bir olayın göreceli sıklığının sınırı olarak gören sıklıkçı olasılık yorumlaması gibi bir dizi başka olasılık yorumundan farklıdır.

Olasılık teorisinde, zincir kuralı, yalnızca koşullu olasılıkları kullanarak bir rassal değişkenler kümesinin ortak dağılımının herhangi bir üyesinin hesaplanmasına izin verir. Kural, koşullu olasılıklar açısından bir olasılık dağılımını tanımlayan Bayes ağları çalışmasında kullanışlıdır.

<span class="mw-page-title-main">Ortak olasılık dağılımı</span>

Ortak olasılık dağılımı ya da birleşik olasılık dağılımı, sayıları birden fazla olan rassal değişkenlerinin birlikte gerçekleşmelerinin olasılık dağılımıdır.