İçeriğe atla

Knudsen sayısı

Knudsen sayısı, moleküler ortalama serbest yol ile kabaca ölçülebilir uzunluk skalasının oranını veren boyutsuz sayıdır. Bu uzunluk skalası, örneğin, bir sıvının içinde yer alan bir cismin çapı olabilir. Knudsen sayısı adını Danimarkalı fizikçi Martin Knudsen'e (1871-1949) atfen almıştır.

Tanım

Knudsen sayısı aşağıdaki gibi tanımlanır:

  • = ortalama serbest yol [L1]
  • = kabaca ölçülebilir uzunluk skalası[L1].

Bir ideal gaz için ortalama serbest yol şu şekilde hesaplanabilir:

  • Boltzmann sabiti (1.3806504(24) × 10−23 J/K), [M1 L2 T−2 θ−1]
  • termodinamik sıcaklık, [θ1]
  • parçacık çapı, [L1]
  • toplam basınç, [M1 L−1 T−2].

Atmosfer içindeki parçaçık dinamiği için (standart basınç ve sıcaklık altında, 25 °C and 1 atm) ortalama serbest yol değeri aşağıdaki gibidir: ≈ 8 × 10−8 m.

Gazlarda Mach ve Reynolds sayıları ile ilişkisi

Knudsen sayısı Mach sayısı ve Reynolds sayısı ile ilişkilendirilebilir:

Dinamik viskozite,

Ortalama molekül hızı (Maxwell-Boltzmann dağılımından),

dolayısıyla ortalama serbest yol,

herhangi bir uzunluk skalası L ile bölünürse Knudsen sayısı elde edilir:

  • ortalama moleküler hız (Maxwell–Boltzmann dağılımından), [L1 T−1]
  • T termodinamik sıcaklık, [θ1]
  • μ viskozite, [M1 L−1 T−1]
  • m moleküler ağırlık, [M1]
  • kB Boltzmann sabiti, [M1 L2 T−2 θ−1]
  • ρ yoğunluk, [M1 L−3].

Boyutsuz Mach numarası:

Ses hızına aşağıdaki gibi ulaşılabilir:

  • U serbest akış hızı, [L1 T−1]
  • R evrensel gaz sabiti, (8.314 47215 J K−1 mol−1), [M1 L2 T−2 θ−1 'mol'−1]
  • M moleküler ağırlık, [M1 'mol'−1]
  • boyutsuz özgül ısılar oranı.

Boyutsuz Reynolds sayısı:

Mach sayısı Reynolds sayısına bölünürse,

ifadesi ile çarpılırsa,

Knudsen sayısı elde edilir.

Uygulaması

Knudsen sayısı, istatistiksel mekaniğin mi yoksa akışkanlar dinamiğinin sürekli ortamlar mekaniği formülasyonunun mu kullanılması gerektiğini belirlemede kullanılır:

Eğer ki Knudsen sayısı birim değere (b.b.d. 1) yakın ya da birim değerden fazlaysa, bir molekülün ortalama serbest yol değeri ilgili problemin uzunluk skalası ile yakın değerlerdedir demektir. Bu durumda, akışkanlar dinamiğinin sürekli ortamlar mekaniği varsayımı iyi bir varsayım olmaktan çıkar. Yerine istatistiksel mekanik formülasyonları kullanılmalıdır.

Yüksek değerli Knudsen sayısı problemleri atmosfer içindeki bir toz taneciğinin hareketi ya da bir uydunun eksosfer içindeki hareketi benzeri konuları içerir. Knudsen sayısı için en önemli işlev alanları mikroakışkan ve mikro elektro-mekanik sistemler tasarımı alanlarıdır.

Bir hava taşıtı etrafındaki akışa ait Knudsen sayısı düşüktür ve bu durum, bu ve buna benzer problemleri sürekli ortamlar mekaniği konusu haline getirir.

Knudsen sayısı, ayrıca, Stokes' yasasındaki Cunningham düzeltme faktöründe (küçük parçacıkların ilgili cisim üzerinde kayması nedeniyle oluşan sürükleme katsayısındaki değişiklik)(çapı dp < 5 µm'den ufak parçacıklar için) düzenleme yapmak için kullanılabilir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Koaksiyel kablo</span> televizyon ve uydu iletişim sistemlerinde kullanılan kablo türü

Koaksiyel kablo radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Solenoid</span>

Solenoid, sıkıştırılmış sarmal eğri şeklindeki sarılı bir bobindir. Bu terim Fransız fizikçi André-Marie Ampère tarafından sarmal bir bobin tasarlamak üzere bulunmuştur.

<span class="mw-page-title-main">Fresnel kırınımı</span>

Fresnel kırınımı ya da yakın-alan kırınımı dalganın yarıktan geçerken, yarık ve projeksiyon arasındaki uzaklığa bağlı olarak büyüklüğünde ve şeklinde değişkenlik gösteren kırınım desenlerine sahip olacak şekilde yakın alanda oluşan kırınım sürecidir. Fresnel sayısının 1'den büyük olduğu durumlarda kırınan dalgaların yayıldığı kısa mesafeden dolayı oluşur. Mesafe arttıkça, ilerleyen kırınım dalgaları düzlem ve Fraunhofer kırınımı oluşturur. Birçok Fresnel kırınımının periyodik bombeler yakınında konumlanması yansımanın aynadan yansımış gibi olmasına neden olur; bu sonuç atomik aynalar için kullanılabilir.

 : yarığın karakteristik genişliği
 : gözlemlenen noktanın yarığa olan uzaklığı
 : dalga boyu.

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Palatini özdeşliği, genel görelilik ve tensör hesabında;

şeklindeki ifadedir.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Yörünge bölgesini temizleme</span> Bir gök cisminin gezegen olarak kabul edilmesi için gereken kriterlerden biri

"Yörünge bölgesini temizleme", bir gök cisminin yörüngesi etrafında kütleçekimsel olarak baskın hale gelmesini ve doğal uyduları ya da kütleçekimsel etkisi altında olanlar dışında, kendi boyutuna yakın başka hiçbir cismin yörüngesinde bulunmamasını tanımlar.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

<span class="mw-page-title-main">Dize titreşimi</span>

Bir dizedeki (tel) [[titreşim]] bir ses dalgasıdır. Rezonans titreşen bir dizenin sabit frekanslı, yani sabit perdeli bir ses üretmesine neden olur. Telin uzunluğu veya gerginliği doğru şekilde ayarlanırsa üretilen ses bir [[müzik tonu]] olur. Titreşimli teller gitar, [[Viyolonsel|çello]] ve piyano gibi yaylı çalgıların temelini oluşturur.

Cauchy sayısı (Ca), süreklilik mekaniği alanında, özellikle sıkıştırılabilir akışların çalışılmasında kullanılan boyutsuz bir niceliktir. Bu sayı, Fransız matematikçi Augustin Louis Cauchy'ye atfen adlandırılmıştır. Sıkıştırılabilirliğin önemli olduğu durumlarda, dinamik benzerlik sağlamak için elastik kuvvetler, atalet kuvvetleriyle birlikte göz önünde bulundurulmalıdır. Bu bağlamda, Cauchy sayısı, bir akış içerisindeki atalet kuvvetleri ile sıkıştırılabilirlik kuvveti arasındaki oran olarak tanımlanmakta ve şu formülle ifade edilmektedir:

,

MS 2. yüzyılda Mısır'da Yunan astronom, coğrafyacı ve jeolog Batlamyus tarafından oluşturulan kirişler tablosu, matematiksel astronomi üzerine bir inceleme olan Batlamyus'un Almagest adlı eserinin Kitap I, bölüm 11'inde yer alan bir trigonometrik tablodur. Esasen sinüs fonksiyonunun değer tablosuna eşdeğerdir. Astronomi de dahil olmak üzere birçok pratik amaç için yeterince kapsamlı olan en eski trigonometrik tablodur. 8. ve 9. yüzyıllardan beri sinüs ve diğer trigonometrik fonksiyonlar, İslam matematiği ve astronomisinde kullanılmış ve sinüs tablolarının üretiminde reformlar yapılmıştır. Daha sonra Muhammed ibn Musa el-Harezmi ve Habeş el-Hâsib bir dizi trigonometrik tablo üretmiştir.