İçeriğe atla

Klima

Bir binanın dışındaki klima kondenser üniteleri
Tek kişilik oda olduğu için pencereye takılan klima

Klima, elektrikli klima veya pasif soğutma ve havalandırmalı soğutma dâhil olmak üzere çeşitli diğer yöntemlerin kullanımıyla daha konforlu bir iç ortam elde etmek için kapalı bir alandaki havanın ısı ve nem kontrol edilmesi işlemidir. Klima, "ısıtma, havalandırma ve klima" (HVAC) sağlayan sistem ve teknikler ailesinin bir üyesidir.

Genellikle buhar sıkıştırmalı soğutma kullanan klimaların boyutları, araçlarda veya tek kişilik odalarda kullanılan küçük ünitelerden büyük binaları soğutabilen devasa ünitelere kadar değişir.[1][2] Soğutma kadar ısıtma için de kullanılabilen ısı pompaları çok soğuk iklimlerde giderek daha yaygınlaşmaktadır. IEA'ya göre, 2018 itibarıyla 1,6 milyar klima ünitesi kuruldu ve bu sayının 2050 yılına kadar 5,6 milyara çıkması beklenmektedir.[3]

Birleşmiş Milletler; seçici gölgeleme, rüzgâr tutucular, daha iyi termal yalıtım ve pasif soğutma da dâhil olmak üzere çeşitli teknikleri kullanarak iklim değişikliğini hafifletmek için teknolojinin daha fazla sürdürülebilir hâle getirilmesi çağrısında bulundu. Klimalarda kullanılan sırasıyla R-12 ve R-22 gibi CFC ve HCFC soğutucular ozon tabakasına zarar verdiler ve CFC'lerin ve HCFC'lerin yerini almak üzere tasarlanmış R-410a ve R-404a gibi HFC soğutucuları bunun yerine iklim değişikliğini şiddetlendirmektedirler.

Her iki sorun da onarımlar sırasında olduğu gibi soğutucu akışkanın atmosfere atılması nedeniyle olur. HFO soğutucu akışkanlar, çoğu yeni ekipmanda olmasa da bazılarında kullanılır, her iki sorunu da ozon hasar potansiyeli (ODP) sıfır ve HFC'lerin üç veya dört hanesine kıyasla tek veya çift hanelerde çok daha düşük küresel ısınma potansiyeli (GWP) ile çözer.

Evlerde ve iş yerlerinde kullanılan günümüz kliması iç ünitesi

Klimalar; soğutma çevrimi kullanarak bir ortamı ısıdan arındıran (ortam sıcaklığını azaltan), ortamdaki fazla nemi alıp ortama taze hava sağlamak amacıyla tasarlanan cihazlardır. İnsanların konforlu bulduğu ortam sıcaklığı, bulunulan ortamdaki hava sıcaklığı ve havadaki nem oranına bağlı olmaktadır. Bu bağlamda ortamda aşırı nem bulunması, insanları sıcak havadan daha çok rahatsız eden bir durumdur. Çünkü ortamdaki nem oranı arttıkça insan vücudunun sıcaklık karşısındaki tepkimesi yavaşlar. Örneğin 40 °C sıcaklık ve %10 nispi neme sahip bir hava 30 °C sıcaklık, %80 nispi neme sahip bir havaya göre daha iyidir. Bu nedenle klimaların yalnızca havayı soğutması yeterli görülmemiş, aynı zamanda ortamdaki nem oranının ayarlanması için de çalışılmıştır. Bu işlemlerin yapılışı "klimalandırma" veya "iklimlendirme" olarak adlandırılabilir. Kullanılan donanım ise "klima" olarak (en: air conditioner) adlandırılır.

Klima türleri

Mini-split ve multi-split sistemler

Evaporatör, iç ünite veya terminal, kanalsız split tip klimanın tarafı

Kanalsız sistemler (veya mini split) sistemler tipik olarak bir binanın tek veya birkaç odasına, kanalsız ve merkezî olmayan bir şekilde şartlandırılmış ve ısıtılmış hava sağlar.[4] Çok bölgeli veya multi-split sistemler, kanalsız sistemlerin yaygın bir uygulamasıdır ve her biri kendi iç ünitesine sahip ve aynı anda tek bir dış üniteden sekiz adede kadar odanın (bölge veya konum) birbirinden bağımsız olarak şartlandırılmasına izin verir. Çok bölmeli sistemlerdeki ana sorun, dış üniteyi iç ünitelere bağlamak için soğutucu hatlarının uzunluğudur.

İlk mini split sistemler 1954-1968'de Mitsubishi Electric ve Toshiba tarafından Japonya'da satıldı ve gelişiminin nedeni küçük ev boyutlarıydı.[5][6][7] Çok bölgeli kanalsız sistemler 1973'te Daikin tarafından icat edildi ve değişken soğutucu akışlı sistemler (daha büyük multi-split sistemler olarak da düşünülebilir) 1982'de Daikin tarafından icat edildi. Her ikisi de ilk olarak Japonya'da satıldı.[8] Değişken soğutucu akışkan akış sistemleri, bir hava işleyicisi tarafından merkezî tesis soğutması ile karşılaştırıldığında, büyük soğuk hava kanallarına, hava işleyicilerine ve soğutuculara olan ihtiyacı ortadan kaldırır; bunun yerine soğuk soğutucu akışkan, şartlandırılacak alanlardaki iç ünitelere çok daha küçük borular aracılığıyla taşınır. Böylece alt tavanların üzerinde daha az alan ve daha düşük bir yapısal etki sağlarken, aynı zamanda daha bireysel ve boşlukların bağımsız sıcaklık kontrolüne izin verir ve dış ve iç üniteler binaya yayılabilir.[9] Değişken soğutucu akışlı iç üniteler, kullanılmayan alanlarda ayrı ayrı da kapatılabilir.

Kanallı merkezî sistemler

Bölünmüş sistemli merkezî klimalar, borulu soğutucu akışkanın ikisi arasında dolaştırıldığı iki ısı eşanjöründen, ısının çevreye verildiği bir dış ünite (kondenser) ile bir iç ısı eşanjöründen (fan coil ünitesi kısaca FCU veya evaporatör) oluşur. FCU daha sonra havalandırma kanalları ile soğutulacak mahallere bağlanır.[10]

Klimaların Çalışma Prensipleri

Klimalarda kullanılan soğutma çevrimi Şeması:
1) Kondansör (Yoğuşturucu)
2) Genişleme Vanası (Kısılma Vanası olarak da rastlanabilir)
3) Evaporatör (Buharlaştırıcı)
4) Kompresör

Klimanın çalışma yöntemi, belirli bir basınç altında bulunan sıvı hâldeki soğutucu akışkanın istenilen sıcaklıkta buharlaştırılması ve buhar hâlden tekrar sıvı hâle döndürülmesi şeklindedir. Çalışma prensibini termodinamiğin ikinci kanunu açıklar.

Çevrim malzemesi olarak kullanılan gaz bir kompresör aracılığıyla emilip sıkıştırılarak sıvılaştırılır. Sıkıştırma sırasında çıkan ısı bir fan vasıtası ile dış ortama atılır. Bu sıvı daha sonra genleşme valfi tarafından üzerindeki basıncın düşürülmesi ile bulunduğu ortamdan ısı çekerek gaz hâline dönüşür. Sıvı bu esnada bulunduğu ortamdan ısı çektiği için ortam sıcaklığını düşürmüş olur. Soğutma akışkanı kompresör tarafından emilerek çevrim aynı şekilde tekrarlanır.

Pencere tipi klima iç yapısı

Soğutucu Akışkanlar

Soğutma makinelerinde soğutucu akışkan olarak önceleri amonyak ve karbondioksit kullanılmıştır. Günümüzde ise freon kullanılmaktadır. Soğutucu akışkanlar şu özelliklere sahip olmalıdır:

  • Buharlaşması ve sıvılaşması uygulanabilir basınçlar altında olmalıdır.
  • Buharlaşma ısısı mümkün olduğunca düşük olmalıdır.
  • Kimyasal olarak ayrışmamalı, yanmamalı, zehirli olmamalı ve metal yüzeylerle tepkimeye girmemelidir – paslandırmamalıdır.
  • Düşük güç ile çalışabilmelidir.
  • Maliyeti düşük olmalı ve kolay temin edilebilmelidir.
  • Çevreyi kirletmemelidir.

En çok kullanılan soğutma akışkanları şunlardır:

  • Freon 12
  • Freon 22
  • Freon 134a
  • Freon 407c
  • Freon 410A (Ozona zararsızdır) 407c'nin muadili olup daha verimli olduğundan 407c'nin yerini tamamen almıştır.
  • Amonyak (Amonyak; patlayıcı, yanıcı ve zehirlidir)
  • Freon 12
  • Frigen 12
  • Kaltron 12
  • Genetron 12
  • Kükürtdioksit

Freon 12, freon gazının F11, F12, F13, F22, F502 gibi türleri vardır. Bileşiğinde C, Cl ve F bulunur. Çoğunlukla klima cihazlarında bu gaz kullanılır. F12'nin atmosferik basınçta kaynama noktası –29,8 °C, donma noktası –157,78 °C'dir. Yoğunluğu havanın yoğunluğundan büyüktür. Renksiz bir gazdır.

R-32 Gazın Özellikleri

HFC-32 olarak da bilinen R-32, CH₂F₂ formülüne sahip organik bir hidroflorokarbon bileşiğidir. Suda çözünmeyen, renksiz, kokusuz, hafif yanıcı bir gazdır. R-32'nin artan popülaritesinin birincil itici gücü, verimlilik ve düşük çevresel etki kombinasyonudur. 675 GWP'si ve 0 ODP'si ile R-32, CFC öncüllerine göre çevre üzerinde çok daha az etkiye sahiptir.

Artıları

R-32'nin başlıca faydaları, verimliliği ve R-22 gibi HCFC'lere ve R-410A gibi soğutucu akışkan karışımlarına göre azaltılmış çevresel etkisidir. Performansı ve çalışma özellikleri, R-410A'ya çok benzer, ancak Küresel Isınma Potansiyelinin kabaca üçte birine sahiptir.

Eksileri

Milyonlarca ünitenin güvenli bir şekilde kurulması ve kullanılması ve düşük yanma hızı nedeniyle R-32'nin gerçek ateşlemesinin çok zor olması nedeniyle R-32'nin hafif yanıcı olarak adlandırılması konusundaki endişeler son yıllarda azalmıştır.

İki soğutucunun çalışma basınçları arasındaki fark da not edilmelidir. Şiddetli olmasa da, fark önemsiz değildir.

Diğer bir potansiyel dezavantaj, R-32'nin bilinmeyen geleceğidir. Eski HFC'lere kıyasla düşük GWP'sine rağmen, 675, R-32'nin soğutucu akışkan ortamına girişini izleyen yıllarda geliştirilen soğutucu akışkanlarınkiyle karşılaştırıldığında oldukça yüksek bir sayıdır. R-1234yf ve R-1234ze gibi HFO'ların yanı sıra son yıllarda popülaritesi artan karbondioksit gibi doğal soğutucuların hepsinin Küresel Isınma Potansiyeli 5'in altında.

Performans açısından R-32 ve R-410A arasında çok az fark vardır, ancak R-32 önemli ölçüde daha verimlidir. Örneğin, R-32 üzerinde çalışan teorik bir 36" x 70" 2 sıralı kondenser, aynı gereksinimi karşılamak için R-410A üzerinde çalışan aynı bobinden %40 daha az soğutucu akışkana ihtiyaç duyacaktır.

Soğutma yöntemleri

Soğutma veya klima tekniğinde üç yöntem uygulanır:

  1. Fiziksel Yöntem: Sıvılar buharlaşırken çevreden ısı çekerler, buharlaşan sıvının çevreden ısı çekmesi, ısı çekilen ortamın sıcaklığının düşmesine neden olur. Isı kaybının neden olduğu sıcaklık düşmesine ya da sıcaklık azalmasına soğuma denir. Fiziksel soğutma yönteminin endüstride kullanılanlarının en önemlisi, soğurmada soğutma yöntemidir. Bu sistemde ısı enerjisinden yararlanılır. Herhangi mekanik parçası yoktur. Soğutma devresinde soğutucu olarak silikojel ve su kullanılır. Silikojel nem tutucu ya da emici siliko-sodyuma maddesel bir asitin etkimesiyle oluşur. Bu bileşik daha sonra yıkanıp kurutulabilir. Çok küçük tanecikler halinde soğutma devresine yerleştirilen silikojel amonyağı emer. Amonyak düşük sıcaklıklarda suda kolayca çözülür. Bu çözelti 65 °C sıcaklıkta ısıtıldığı zaman buharlaşır ve sudan ayrışır. Suyun işlevi soğutma devresindeki amonyağı çözmektir. Sistem; soğurma cihazı, kondansör (yoğuşturucu) ve (evaporatör) buharlaştırıcıdan oluşur.
  2. Kimyasal Yöntem: Normal sıcaklıkta oldukları halde bazı kimyasal maddeler belirli aralarda birbirleriyle karıştırıldıkları zaman daha düşük sıcaklıklar elde edilebilir. Bunun nedeni karışım oluşurken çevreden bir miktar ısı alınmasıdır. Örneğin kar veya buzla yemek tuzu karıştırıldığında soğuma elde edilir. %65 kar veya buz,% 35 tuz (NaCl) karıştırıldığında ilk sıcaklık 0 °C, karışım sıcaklığı –20 °C'dir. %60 kar ya da buz %40 tuzun ilk sıcaklığı 0 °C, karışım sıcaklığı –30 °C'dir.
  3. Mekanik Yöntem: Mekanik yöntemle soğutma dışarıdan iş verilerek soğutucu akışkanın basınç ve sıcaklığının yükseltilmesi esasına dayanır. Termodinamiğin 2. kanununa göre ters Carnot çevrimi prensibine göre çalışır.

Klima ile ilgili kavramlar

  • Nemli Hava: Çevremizi saran hava yalnızca N2 ve O2'den oluşmaz, yüksek oranda su da bulundurur. Su buharı miktarı, çevre şartlarına bağlı olarak değişir. Havanın içerisindeki aşırı nem, insanlar için rahatsız edici boyutlardadır. Sıcaklığı aynı olmasına rağmen nem oranı yüksek hava, nem oranı düşük olandan daha çok rahatsız edicidir.
  • Mutlak nem: 1 m3 nemli havanın içerdiği su buharı miktarının kuru hava miktarına oranına mutlak nem denir. Mutlak nemi 1 kg kuru havanın içerdiği su buharı miktarı olarak da tanımlamak mümkündür.
  • Bağıl Nem: Mevcut havada bulunan su buharı miktarının aynı sıcaklıkta doymuş havada bulunan su buharı miktarına oranıdır.
  • Çiy Noktası: Havanın içindeki su buharının yoğuşmaya başladığı sıcaklıktır. Başka bir ifadeyle mevcut havanın, içindeki su buharı miktarını değiştirmeden doyma durumuna getirildiğinde ölçülen sıcaklığıdır.
  • Yaş Termometre Sıcaklığı: Belirli bir su kütlesinin doygun olmayan hava tarafından etkilendiğini varsayalım, suyun

sıcaklığı bu havanın sıcaklığından daha büyük olursa sudan havaya ısı geçişi başlar ve su ağır ağır buharlaşarak soğur. Suyun sıcaklığı havanın sıcaklığına eşit olunca sudan havaya ısı akımı durur. Ancak hava doygunlaşmadığı için buharlaşma devam eder. Buharlaşmanın devam etmesi suyun sıcaklığının havanın sıcaklığının altına düşmesine neden olur. Bu durumda da havadan suya ters ısı akımı başlar. Belli bir noktadan sonra ısıl denge sağlanır. Havayla suyun arasındaki ısıl dengenin sağlandığı sıcaklığa termodinamikte ve klima tekniğinde yaş termometre sıcaklığı denir. Üzerine ıslak pamuk sarılmış bir termometrenin gösterdiği sıcaklık yaş termometre sıcaklığıdır. Kısaca mevcut havanın ısısını değiştirmeden doyma durumuna getirilerek ölçülen sıcaklığa yaş termometre sıcaklığı denir.

  • Kritik Basınç: Kompresörün çalışması için gerekli olan basınçtır.

İnverter Klima

DC motorlu değişken devirli klimalardır. AC motor akımlarından farklı olarak çalışan bu tarz klimalar enerji verimliliği ile elektrikten çekilen yükü azaltarak daha az enerji ile maksimum fayda sağlayan klimalara denir.

Birçok dünya devi klima üreticisi günümüzde inverter klima üretmektedir. -15 derecede bile performans veren klima türüdür. Bugün Avrupa Birliği üyelerinde satışı yasaklanan B Enerji Türü klimalara oranla %50 ila %70 oranda daha az enerji harcarlar.

2007 ve 2008 yılları arasında yaygınlaşma eğilimi gösteren ve 2010 yılı itibarıyla %99 oranında bütün markaların ürettiği bu klima tipi için bu terim birçok ülkede kullanılmaktadır.

Süper Inverter Terimi (Super Invertech) DC motorların (Doğru akım motoru) daha sessiz çalıştırılarak elde edilen klima çalışma teknolojisinin genel adıdır. İnsan vücudunun yaydığı ısıdan kişilerin mekândaki yerini ve hareketlerini algılayan teknoloji sensörü ile klimadan üflenen havayı en ideal şekilde yönlendirir. Ortamda herhangi bir kişi olup olmadığını tespit ederek klimanın çalışmasını kontrol eder ve bu yolla yüksek enerji tasarrufu sağlar.

Soğutma Birimi

Klimaların soğutma değerini ifade eden birim, kısaltılmış hâli BTU olan British Thermal Unit'tir. Watt ve Joule arasında direkt ilişki kurulabilen bu birim soğutma gücü için özellikle kullanılmaktadır. Soğutulacak odanın özellikleri, soğutma için gereken BTU değerini vermektedir. Aşağıda bir odayı soğutmak için verilmesi gereken BTU değerinin, odanın özelliklerinden nasıl etkilendiğini görebileceksiniz.

Oda alanının BTU etkisi

337 sayısı bölge katsayıdır. Türkiye için

Pencerelerin BTU etkisi
Odayı paylaşan kişi sayısı
Aletler ve aydınlatma araçlarının ürettiği ısı miktarı (Watt toplamı)
  • Bu değerlerin toplamı, genel soğutma ihtiyacını BTU olarak verecektir:

Otomobil endüstrisinde klima

Otomobillerde kullanılan klimaların ana parçaları

  • 1 . Kompresör (Sıkıştırıcı) : Sistemin içinde gaz halinde bulunan akışkanı yüksek basınçlı gaz haline dönüştürüp devreye pompalar.
  • 2 . Kondenser (Yoğunlaştırıcı) : Yüksek basınç ve sıcaklıkta, gaz halindeki akışkanın yoğuşma gizli ısısını atarak sıvı hale geldiği yerdir.
  • 3 . Evaporatör (Buharlaştırıcı) : Düşük basınç ve sıcaklıktaki sıvı akışkanın buharlaşma gizli ısısını ortamdan çekip akışkanın gaz haline geldiği yerdir.
  • 4 . Receiver (Alıcı): Sistemin içinde dolaşan akışkanı depolar, içindeki nem ve pislikleri alır.
  • 5 . Evaporatör Fanı : Elektrik motorundan aldığı tahrikle çalışan fan evaporatörün üzerinden aldığı soğuk havayı kanallara üfler
  • 6 . Kondenser Fanı : Elektrik motorlu fan kondenser ısındığı zaman termostatı sayesinde devreye girerek soğutma yapar
  • 7 . Kompresör Kasnağı : Motor kayışından aldığı tahrikle kompresörün çalışmasını sağlar

Klima kullanımının sürüş güvenliğine etkisi

Sıcaklığın 21 ile 27 derece arasında olduğu bir ortamda yapılan test sürüşünde otomobilin içine yerleştirilen hoparlörlerden zil çalması, korna sesleri, itfaiye sireni gibi sesler verilerek sürücünün bu sesleri zamanında duyup duymadığını kontrol etmek için bir pedala basması istenmiş. 27 dereceye ulaşıldığında sürücünün seslere gösterdiği reaksiyon süresinin % 20 ve daha da üzerinde oranlarda arttığı saptanmış. Ayrıca sıcaklık 27 derecedeyken 21 derecenin iki katı oranında sinyal dikkate alınmayarak atlanmış. Yüksek ısıdan etkilenen sürücünün 0,5 promil oranında alkol alan bir sürücüyle aynı durumda olduğu saptanmış. Birçok kazaya yol açan saniyelik uykunun %32'si yüksek sıcaklık nedeniyle meydana gelmektedir.

Etki

Sağlık etkileri

Sıcak havalarda klima, sıcak çarpması, dehidrasyon'un aşırı terleme ve hipertermi ile ilgili diğer sorunları önleyebilir.[11] Isı dalgaları gelişmiş ülkelerdeki en ölümcül hava olayı türüdür. Klima (filtreleme, nemlendirme, soğutma ve dezenfeksiyon dahil), hastane ameliyathanelerinde ve uygun atmosferin hasta güvenliği ve refahı için kritik olduğu diğer ortamlarda temiz, güvenli, hipoalerjenik bir atmosfer sağlamak için kullanılabilir. Bazen alerjileri, özellikle küf olan kişiler tarafından evde kullanılması önerilir.

Bakımı kötü olan su soğutma kuleleri, Legionnaires hastalığından sorumlu bulaşıcı ajan olan Legionella pneumophila' gibi mikroorganizmaların büyümesini ve yayılmasını teşvik edebilir. Soğutma kulesi temiz tutulduğu sürece (genellikle klor işlemiyle), bu sağlık tehlikelerinden kaçınılabilir veya azaltılabilir. New York eyaleti, Legionella'ya karşı koruma sağlamak için soğutma kulelerinin tescili, bakımı ve test edilmesiyle ilgili gereksinimleri kodlamıştır.[12]

Çevresel etkiler

Birçok ülke hidroflorokarbonların tüketimini ve üretimini azaltmak için Kigali Değişikliği'ni henüz onaylamadığından, soğutucu akışkanlar ozon incelmesi ve iklim değişikliği dahil olmak üzere ciddi çevresel sorunlara neden oldu ve neden olmaya devam ediyor.[13]

Mevcut iklimlendirme, küresel olarak binalardaki enerji tüketiminin %20'sini oluşturur ve iklim değişikliği ve teknoloji alımı nedeniyle iklimlendirme kullanımında beklenen artış, enerji talebinde önemli bir artışa neden olacaktır.[14][15] Sürekli iklimlendirmeye alternatifler arasında pasif soğutma, pasif güneş enerjisiyle soğutma doğal havalandırma, güneş kazancını azaltmak için çalışan gölgelikler, güneş kazancını azaltmak için ağaçlar, mimari gölgelikler, pencereler (ve pencere kaplamaları kullanmak) sayılabilir.

2018'de Birleşmiş Milletler, iklim değişikliğini azaltmak için teknolojinin daha sürdürülebilir hale getirilmesi çağrısında bulundu.[16][17]

Ekonomik etkiler

Klima, özellikle 1970'lerden başlayarak Amerika Birleşik Devletleri'nin demografisinde çeşitli değişikliklere neden oldu:

  • doğum oranı ilkbaharda 1970'lere kadar diğer mevsimlere göre daha düşüktü, ancak bu fark sonraki 30 yılda azaldı[18]
  • Yaz aylarında sıcak hava dalgasına maruz kalan bölgelerde daha yüksek olan yaz mevsimi ölüm oranı da dengelendi.
  • Güneş Kemeri, 20. yüzyılın başında Amerikalıların %24'ünün yaşadığı zaman, şimdi toplam ABD nüfusunun %30'unu içerir.[19]

Kaynak hatası: <ref> etiketinde geçersiz değişken (Bkz: )

Ayrıca bakınız

Kaynakça

  1. ^ "Cooling Tubes". Earthship Biotecture. 27 Mart 2020. 28 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  2. ^ "Earth Tubes: Providing the freshest possible air to your building". Earth Rangers Centre for Sustainable Technology Showcase. 28 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  3. ^ Kaynak hatası: Geçersiz <ref> etiketi; :1 isimli refler için metin sağlanmadı (Bkz: )
  4. ^ "M-Series Contractor Guide" (PDF). Mitsubishipro.com. Mitsubishi Electric United States. s. 19. 18 Mart 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 12 Mayıs 2021. 
  5. ^ "Air-conditioning Systems - Overview - Milestones". Mitsubishi Electric. 28 Şubat 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  6. ^ "Toshiba Carrier Global | Air conditioner | About Us | History". Toshiba Carrier Corporation. Toshiba. April 2016. 9 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  7. ^ "1920s–1970s | History | About". Mitsubishi Electric Global Website. Mitsubishi Electric. 8 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  8. ^ "History of Daikin Innovation | Corporate Information". Daikin. 5 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  9. ^ Feit, Justin (20 Aralık 2017). "The Emergence of VRF as a Viable HVAC Option". BUILDINGS.com. Stamats Communications, Inc. 3 Aralık 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Mayıs 2021. 
  10. ^ Kaynak hatası: Geçersiz <ref> etiketi; gov isimli refler için metin sağlanmadı (Bkz: )
  11. ^ "Heat Stroke (Hyperthermia)". Harvard Health. Harvard Health Publishing. 2 Ocak 2019. 29 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2021. 
  12. ^ "Subpart 4-1 - Cooling Towers". New York Codes, Rules and Regulations. 7 Haziran 2016. 13 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2021. 
  13. ^ Gerretsen, Isabelle (8 Aralık 2020). "How your fridge is heating up the planet". BBC Future. 10 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2021. 
  14. ^ "Air conditioning use emerges as one of the key drivers of global electricity-demand growth". International Energy Agency. 15 Mayıs 2018. 18 Şubat 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2021. 
  15. ^ Mutschler, Robin; Rüdisüli, Martin; Heer, Philipp; Eggimann, Sven (15 Nisan 2021). "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake". Applied Energy. 288: 116636. doi:10.1016/j.apenergy.2021.116636Özgürce erişilebilir. ISSN 0306-2619. 
  16. ^ "Keeping cool in the face of climate change". UN News. 30 Haziran 2019. 6 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2021. 
  17. ^ Campbell, Iain; Kalanki, Ankit; Sachar, Sneha (2018). Solving the Global Cooling Challenge: How to Counter the Climate Threat from Room Air Conditioners (PDF). Rocky Mountain Institute. 14 Mart 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Mayıs 2021. 
  18. ^ Barreca, Alan; Clay, Karen; Deschênes, Olivier; Greenstone, Michael; Shapiro, Joseph S. (1 Şubat 2016). "Adapting to climate change: the remarkable decline in the U.S. temperature-mortality relationship over the 20th century" (PDF). Journal of Political Economy. 124 (1). doi:10.1086/684582. 13 Mart 2020 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Mayıs 2021. 
  19. ^ Glaeser, Edward L.; Tobio, Kristina (April 2007). "The Rise of the Sunbelt" (PDF). Southern Economic Journal. 74 (3): 610-643. doi:10.3386/w13071Özgürce erişilebilir. 29 Ocak 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 31 Ocak 2020. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Isı transferi</span> Isıl enerjinin fiziksel sistemlerde taşınımı

Isı aktarımı, sıcaklıkları farklı iki veya daha fazla nesne arasında iletim, taşınım ya da ışınım yoluyla gerçekleşen enerji aktarımının incelenmesidir. Bu transferin matematiksel olarak modellenmesi ısı aktarımı dersinin temel konusunu oluşturur. Termodinamik, akışkanlar mekaniği ve malzeme ile ilişkilidir.

<span class="mw-page-title-main">Soğutma çevrimi</span>

Bir soğutma çevrimi, soğutucu bir akışkanın ısıyı emmesi ve daha sonra yayması ile oluşan değişikliklerin tanımlandığı, bir soğutucu içinde gerçekleşen çevrimdir.

Mekanik sıkıştırmalı soğutma çevrimi, en yaygın soğutma çevrimidir. Soğutucu akışkanın düşük basınçta çevreden ısı alarak buharlaşmasını sağlayan eleman buharlaştırıcıdır. Evaporatörden alınan buharı yüksek basınçlı kondensere basan eleman kompresördür. Kompresörden gelen sıcak kızgın gazın ısısını alarak onun yoğunlaşmasını sağlayan eleman kondenserdir (yoğunlaştırıcı). Sıvı hale gelen soğutucu akışkanın toplanabileceği eleman sıvı deposudur. (receiver) Sıvı deposundan gelen sıvı soğutucu akışkanın geçişini çeşitli metotlarla kısıtlayarak evaporatörde düşük basınç oluşmasını, dolayısıyla soğutucu akışkanın buharlaşacak hale gelmesini sağlayan eleman genleşme valfidir.

BTU ya da Btu ; bir libre suyun sıcaklığını 1 derece Fahrenayt artırmak için gerekli olan enerji miktarıdır. Bu tanım, sıcaklık değişimlerinin 1 atmosferlik basınç altında ölçümleri şartında geçerlidir.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

<span class="mw-page-title-main">Buzdolabı</span>

Buzdolabı; yaygın olarak buhar sıkıştırma çevrimine göre çalışan, gıdaların soğuk tutularak uzun zaman muhafaza edilmesini sağlayan soğutma makinesidir. Bu bağlamda absorpsiyonlu soğutma ve ayrıca Peltier soğutma sistemleri ile çalışan buzdolapları da mevcuttur.

<span class="mw-page-title-main">Isı pompası</span> Isıyı bir alandan diğerine aktaran sistem

Gerçekte bir soğutma çevrimi olan ısı pompası çevriminin temel prensibini Nicolas Léonard Sadi Carnot 1824 yılında ortaya atmıştır. 26 yıl sonra 1850 yılında Lord Kelvin'in, soğutma cihazlarının ısıtma maksadı ile kullanılabileceğini ileri sürmesiyle ısı pompası uygulamaya girdi. II. Dünya Savaşı'ndan önce ısı pompasının geliştirilmesi ve kullanılır hâle getirilmesi için birçok mühendis ve bilim insanı bu alanda araştırmalar ve çalışmalar yaptı. Savaş yıllarında endüstri, imkânlarını daha acil problemlere yönelttiği için ara verilen bu çalışmalara savaştan sonra tekrar başlandı.

Isıtma sistemleri, kullanım mekanlarının istenen sıcaklıkta tutulabilmesi için iç ortamdan dış ortama olan ısı kaybının karşılanması prensibi ile çalışan sistemlerdir. Merkezi ve lokal (bölgesel) olarak iki ana başlıkta toplanabilir.

<span class="mw-page-title-main">Soğutma</span>

Soğutma, bir maddenin veya ortamın sıcaklığını, onu çevreleyen ortamın sıcaklığının altına indirmek ve orada muhafaza etmek üzere ısısının alınması işlemine denir.

<span class="mw-page-title-main">Buharlaştırıcı</span>

Buharlaştırıcı, kaynama noktası farkından yararlanarak karışımları birbirinden ayırmayı sağlayan bir endüstriyel ekipmandır. Buharlaştırıcılar bir çözeltideki çözücü maddeyi veya bir sıvı karışımdaki daha düşük kaynama noktasına sahip bileşeni buharlaştırarak uzaklaştırılmasını sağlar. Neredeyse bütün endüstriyel işlemlerde çözücü bileşen sudur, suyun uzaklaştırılmasıyla daha derişik bir karışım elde edilmiş olur. Sıvı halde kalan derişik karışım genelde üründür. Buharlaşan bileşen su ise oluşan su buharı atmosfere verilebilir ya da içerdiği ısı sebebiyle endüstriyel süreçlerde tekrar kullanılabilir. Buharlaşan bileşen eğer su haricinde bir çözücü maddeyse değerli olduğundan ötürü uzaklaştırılmaz ve tekrar kullanılır.

İklimlendirme terimi çoğunlukla soğutma yapılarak iç mekanlardaki havanın ısı konforu sağlanması ve neminin alınması işlemlerine denir. Daha geniş bir anlamda, terim HVAC, ısıtma, soğutma ve havalandırma veya havanın durumunu iyileştirmek için dezenfeksiyon işlemleri için de kullanılır. Bir klima bir çevrimi kullanarak, çoğunlukla binalardaki ve taşıma araçlarındaki konfor için ortamdaki ısıyı çeken, bir aygıt, bir sistem veya bir mekanizmadır.

Freon; kokusuz, renksiz, yanıcı olmayan, temas ettiği metalleri paslandırmayan bir gazdır. DuPont'un tescilli markasıdır. Kloroflorokarbon ya da hidrokloroflorokarbon formülleriyle bilinir. Freon gazı türüne göre yaklaşık -30 derecede kaynar ve -180/-200 derecelerde donar. Klima ve soğuk hava deposu makinelerinde kullanılır. Çevreye zarar veren ve vermeyen türleri vardır. En çok bilinen türleri R22 ve R404 dür.

<span class="mw-page-title-main">İşbâ</span>

İşbâ ya da çiy noktası, bir gaz içinde bulunan serbest nemin içinde bulunduğu veya etrafında bulunduğu cisimlerin yüzeyinde yoğunlaşarak su (sıvı) durumuna geçmeye başladığı sıcaklık derecesidir.

Yoğuşturucu, kondenser veya kondansör, buharlı güç sistemleri ve gazlı soğutma-iklimlendirme sistemlerinde buhar ya da soğutucu gazın ısısını çevreye ya da başka bir soğutucuya vererek sıvı hâle geçtiği ısı değiştirici bir makinedir.

Soğutucu akışkanlar, klima sistemlerinin ve ısı pompalarının soğutma döngüsünde kullanılan ve çoğu durumda sıvıdan gaza tekrarlanan bir faz geçişine ve tekrar geri dönen maddelerdir. Sıcaklığa ve basınca bağlı olarak saf olabilir veya sıvı veya gaz fazında veya her ikisinde bulunan saf sıvıların bir karışımı olabilir. Akışkan, düşük sıcaklık ve düşük basınçta ısıyı emer ve daha sonra, genellikle hâl değişikliği ile daha yüksek sıcaklık ve basınçta ısı verir.

<span class="mw-page-title-main">Roket motoru</span>

Roket motoru, genellikle yüksek sıcaklıktaki gaz olan yüksek hızlı itici bir sıvı jeti oluşturmak için tepkime kütlesi olarak depolanmış roket itici gazlarını kullanır. Roket motorları, Newton'un üçüncü yasasına göre kütleyi geriye doğru fırlatarak itme üreten tepki motorlarıdır. Çoğu roket motoru, gerekli enerjiyi sağlamak için reaktif kimyasalların yanmasını kullanır, ancak soğuk gaz iticileri ve nükleer termal roketler gibi yanmayan biçimleri de mevcuttur. Roket motorları tarafından tahrik edilen araçlara genellikle roket denir. Roket araçları, çoğu yanmalı motorun aksine kendi yükseltgen taşır, bu nedenle roket motorları, uzay aracını ve balistik füzeleri itmek için bir boşlukta kullanılabilir.

<span class="mw-page-title-main">Yoğunlaşma</span>

Yoğunlaşma veya yoğuşma, maddenin fiziksel halinin gaz fazından sıvı faza değişimi ve buharlaşmanın tersidir. En sık su döngüsü anlamında kullanılır. Atmosfer içinde bir sıvı veya katı bir yüzey veya Yoğunlaşma bulutu ile temas ettiğinde, su buharının sıvı suya değişmesi olarak da tanımlanabilir. Doğrudan gaz fazdan katı faza geçiş gerçekleştiğinde, değişime kırağılaşma denir.

<span class="mw-page-title-main">Soğutma grubu</span> chiller

Soğutucu, buhar sıkıştırmalı, adsorpsiyonlu soğutma veya absorpsiyonlu soğutma çevrimleriyle sıvı soğutucudan ısıyı alan makinedir. Bu sıvı daha sonra ekipmanı soğutmak için ısı değiştiriciden veya başka proses akışından dolaştırılabilir. Soğutma, ortama verilmesi gereken veya yüksek verimlilik için ısıtma amacıyla geri kazanılması gereken atık ısı oluşturur.

Bir ısı pompası, buzdolabı veya klima sisteminin performans katsayısı veya COP, yapılan iş karşılığında sağlanan yararlı ısıtma veya soğutma oranıdır. Yüksek COP'ler düşük işletme maliyetlerine eşittir. COP genellikle, özellikle ısı pompalarında, 1'i geçer, çünkü işi sadece ısıya dönüştürmek yerine, bir ısı kaynağından ısının gerekli olduğu yere ilave ısı pompalanır. Eksiksiz sistemler için, COP hesaplamaları tüm güç tüketen yardımcı sistemlerin enerji tüketimini içermelidir. COP, çalışma koşullarına, özellikle de mutlak sıcaklığa ve ısı deposu ile sistem arasındaki bağıl sıcaklığa oldukça bağlıdır ve genellikle beklenen koşullara göre grafiklendirilir veya ortalaması alınır. Absorpsiyonlu soğutucu soğutma gruplarının performansı tipik olarak çok daha düşüktür, çünkü bunlar sıkıştırmaya dayanan ısı pompaları değildir, bunun yerine ısıyla yürütülen kimyasal reaksiyonlara dayanır.

Akışkan gücü için, aracı akışkan, kuvvet, hareket veya mekanik enerji aktaran bir gaz veya sıvıdır. Hidrolikte, su veya hidrolik sıvı; hidrolik elamanlar arasında kuvvet transferini sağlar. Pnömatikte, aracı akışkan, pnömatik elemanlar arasında kuvvet ileten hava veya başka bir gazdır. Pnömatik sistemlerde, aracı akışkan sıkıştırılabilir olduğu için aynı zamanda enerji de depolar.