İçeriğe atla

Klasik mekanik tarihi

Bu maddede klasik mekanik tarihi anlatılmaktadır.

Antik çağlar

Eski yunan filozofları, özellikle Aristotales,doğanın yönetilmesinde belirli kanunları geçerli olduğunu savunan ilk kişiydi. Aristo "On the Heaven" adlı eserinde yeryüzüne ait bedenlerin ait oldukları yere gideceğinden bahsetmiş ayrıca yanlışlıkla biri diğerinin iki katı olan cismin yere aynı yükseklikten yaklaşık yarı zamanlı olarak düşeceğini savunmuştur. Aristoteles, mantığa ve gözlemin gücüne inanmış olsa da bilimsel metotların ortaya çıkışı günümüzden yaklaşık on sekiz yüzyıl önce Francis Bacon tarafından yapılmış bilimsel deneylerle ve kendisinin adlandırdığı şekilde doğanın sıkıntısı olarak tanımladığı deneylerle başlar.[1]

Aristo doğal hareketle kuvvet altındaki hareketin arasındaki farkı anlamış ve varsayımsal olarak herhangi bir bedenin bir itme gücü olmadan bir noktadan öteki bir noktaya gitmesinin mümkün olmadığına inanmıştır. Bu durumun bir sonucu olarak da bedenin ya bir noktada sabit kalması gerektiğini ya da süresiz olarak hızlanmasının mantıklı olduğunu düşünmüştür. Bu metotla, Aristo eylemsizlik kanununa benzeyen yaklaşan ilk kişi olmuştur. Ancak onun inanışına göre bir boşluğun olması imkânsızdı çünkü çevresini kaplayan havanın boşluğun içine dolması ve yer kaplaması gerekirdi. Aristo'nun başka bir inanışına göre ise eğer bir cisim üzerine uygulana kuvvetler kaldırılırsa hareket etmeyi durdurur. Bundan daha sonra Aristo, bir okun yaydan fırladıktan sonra havada devamlı ilerlediği üzerine okun kendi yolu üzerinde bir boşluk oluşturduğu ve havayı geriye doğru ittiği üzerine derin bir incelemede bulunmuştur. Aristo'nun inançları Platon'nun öğretilerinden kaynaklanmaktadır. Bunun sonucunda gökyüzündeki hareketlerin yeryüzündeki hareketlerden daha mükemmel olduğuna kanaat getirdi.

Daha sonra Galileo havanın direncinin iki şekilde işlediğini ortaya koydu; ilk yol olarak daha yüksek empedans daha yoğun cisimler için ve ikinci olarak daha yoğun direnç daha hızlı hareket eden cisimler için.[2]

Ortaçağdaki düşünceler

Fransız rahip Jean Buridan enerji teorisini geliştirirken, Albert, Bishop of Halberstadt, daha sonraki teorileri gelştirdi.

Modern zamanlar — klasik mekaniğin oluşumu

Bu dönem Galileo'nun teleskopu icat etmesiyle gökyüzünün mükemmel olmadığını ve değişken olduğunu anlamasıyla başlar. Kopernik in güneş merkezli hipotezine göre dünya öteki gezegenlerle aynıydı ve o ünlü deneyini bu dönemlerde gerçekleştirdi. Deneyde, iki gülleyi Pisa kulesinin tepesinden bırakan Galileo, (Bu deney her ikisinin de aynı anda yere değdiğini gösterdi.). Deneyin gerçekliği şaibeli olsa bile, o eğimli bir yüzeyden topları yuvarlayarak deneylerine devam etmiş günümüzde ispatlanan bu deneyler. Galileo'nun kendi deney sonuçlarında incelenmiştir. Galileo ayrıca dik olacak şekilde bırakılan cisimlerin yatay olarak atılan aynı cisimle eşit sürede yere vardığını ispatlamıştır. Daha önemli sonuçlara göre sabit hızlı olan hareket konumu sabit olan bir hareketten ayırt edilemez ve bunun sonucu olarak da rölativitenin temeli oluşmuş olur.

Newton hareketin üç kanunu tanımlayan (Eylemsizlik Kanunu, yukarıda bahsedilmiş olan ikinci yasa ve etki tepki kanunu), Newton ve aynı dönemde yaşayan taraftarları Christiaan Huygens hariç klasik mekaniğin tüm detayları (Geometrik Optik) ışığı dahil açıklayabileceğini savundular. Newton'un kendi açıklaması "Newton's Rings" dalga prensibini açıklamaktan kaçınmış ve ışık parçacıklarının cam tarafından değiştirilmiş ya da yankılanmış olduğunu öne sürmüştür.

Newton ayrıca matematiksel açıklamalar için önemli olan Calculus'u geliştirmiş,ancak Newton'dan bağımsız olarak Gottfried Leibniz Calculus'u geliştirmiş türev ve integralin kullanımını geliştirmiş günümüzde kullanılan hale getirmiştir. Klasik mekanik Newton'un zamanın türevi için bulduğu nokta formülünü kullanmaktadır.

Leonhard Euler, Newton'un kanunu genişletmiş, hareket kanunu parçacıklardan sabit cisimler için ek kanunlarla uygulanmıştır.

Newton`dan sonra yaniden türetilen formüller çok daha fazla problemin çözülmesine izin verdi. Bunlardan ilki İtalyan, Fransız matematikçi 1788 de Joseph Louis Lagrange,tarafından anlaşılmıştır. 1788 Lagrange mekaniğe göre çözüm en az etkiyi içerirken Calculus değişkenleriyle işlemler yapılır. . William Rowan Hamilton Lagrange mekaniğini 1833 te yeniden formülleştirmiştir. Bu mekaniğin avantajı altyapının daha detaylıca prensiplerin anlaşılmasını sağlamak olmuştur. Bu mekaniğin pek çok temeli kuantum mekaniğinde de gözlemlenebilir.

Klasik mekanik öteki klasik fizik teorilerine göre oldukça büyük bir üstünlük sağlamış olsa dahi örenğin klasik elektrodinamik ve termodinamik,pek çok problem on dokuzuncu yüzyılın sonlarına doğru ortaya çıkmış ve ancak bu sorunların modern fizik metoduyla çözülebileceği anlaşılmıştır. Klasik termodinamik ile birleştirildiğinde,klasik mekanik Gibbs paradoksu'unun (Entropin'in iyi tanımlanamadığı bir varsayım) oluşmasına neden olur. Günümüzdeki deneyler atomik düzeye indiğinden artık klasik mekaniğin enerji boyutlarını ve büyüklüklerini bile açıklamakta yetersiz kaldığını görebiliyoruz .Bu problemlerin çözümüne yönelmek kuantum mekaniğinin ortaya çıkmasını sağladı.

Günümüz

20. yüzyılın sonunda, fizik klasik mekaniği artık bağımsız bir teori değildi. Elektromanyetizma ile birlikte, rölativistik kuantum mekaniğine yani kuantum alan teorisine yerleşmiş oldu. Bu göreceli olmayan, kuantum olmayan büyük parçaların mekaniğini tanımlar.

Klasik mekanik matematikçiler için de ilham kaynağı olmuştur. Klasik mekanikteki faz uzayının realize edilmesi simplektik manifoltun (aslında fiziksel alanlarda Kotanjant) ve Simplektik topolojinin, Hamilton mekaniğinin global çalışmalarıymışçasına düşünülebilen, 1980 den beri verimli bir matematik araştırması alanı, doğal tanımını verir.

Kaynakça

  1. ^ Peter Pesic (Mart 1999). "Wrestling with Proteus: Francis Bacon and the "Torture" of Nature". Isis. 90 (1). The University of Chicago Press on behalf of The History of Science Society. ss. 81-94. doi:10.1086/384242. JSTOR 237475. 
  2. ^ Galileo Galilei, Dialogues Concerning Two New Sciences by Galileo Galilei. Translated from the Italian and Latin into English by Henry Crew and Alfonso de Salvio. With an Introduction by Antonio Favaro (New York: Macmillan, 1914). Chapter: The Motion of Projectiles 11 Aralık 2013 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

Fizik, maddeyi, maddenin uzay-zaman içinde hareketini, enerji ve kuvvetleri inceleyen doğa bilimi. Fizik, Temel Bilimler'den biridir. Temel amacı evrenin işleyişini araştırmaktır. Fizik en eski bilim dallarından biridir. 16. yüzyıldan bu yana kendi sınırlarını çizmiş modern bir bilim olmasına karşın, Bilimsel Devrim'den önce iki bin sene boyunca felsefe, kimya, matematik ve biyolojinin belirli alt dalları ile eş anlamlı olarak kullanılmıştır. Buna karşın, matematiksel fizik ve kuantum kimyası gibi alanlardan dolayı fiziğin sınırlarını net olarak belirlemek güçtür.

<span class="mw-page-title-main">Galileo Galilei</span> İtalyan fizikçi ve astronom (1564–1642)

Galileo Galilei, İtalyan astronom, fizikçi, mühendis, filozof ve matematikçiydi.

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Mekanik</span> kuvvetlere veya yer değiştirmelere maruz kalan fiziksel cisimlerle ilgilenen bilim

Mekanik, fiziğin fiziksel nesnelerin hareketleriyle, özellikle kuvvet, madde ve hareket arasındaki ilişkilerle ilgili alanıdır. Nesnelere uygulanan kuvvetler yer değiştirmeler veya bir nesnenin çevresine göre konumunda değişikliklerle sonuçlanır. Fizik'in bu dalının kökenleri Antik Yunanistan'da Aristoteles ve Arşimet'in yazılarında bulunur.. Erken modern dönem sırasında, Galileo, Kepler ve Newton gibi bilim adamları şimdiki klasik mekaniğin temellerini attılar. Klasik mekanik, duran veya ışık hızından çok daha düşük hızlarla hareket eden cisimlerle ilgili klasik fizikin bir dalıdır. Kuantum aleminde olmayan cisimlerin hareketini ve üzerindeki kuvvetleri inceleyen bilim dalı olarak da tanımlanabilir. Alan bugün kuantum teorisi açısından daha az anlaşılmıştır.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Fizik felsefesi</span>

Fizik felsefesi, klasik ve modern fiziğin içerisindeki teori ve yorumları inceleyen bir bilim felsefesi dalıdır. Fizik teorileri ve yorumlarından yola çıkarak sorduğu sorularla çeşitli cevaplara ulaşmayı amaçlamaktadır. Uzay ve zaman felsefesi, kuantum mekaniği felsefesi, termal ve istatistiksel felsefe gibi alt dallara ayrılmaktadır.

<span class="mw-page-title-main">Teorik fizik</span> fizik biliminin bir branşı

Teorik fizik, fiziğin matematiksel modellemeler ve fiziksel nesnelerin soyutlandırılmaları çalışmaları ve doğa olaylarını açıklayan, gerçekselleştiren ve tahmin yürüten fizik dalıdır. Bu deneysel fiziğin zıttıdır ki deneysel fizik araçlarla bu olayları soruşturur.

<span class="mw-page-title-main">Görelilik ilkesi</span> Fizik yasalarının tüm referans çerçevelerinde aynı olması gerektiğini belirten fizik ilkesi

Görelik teorisi ya da basitçe fizikte görelilik genellikle Albert Einstein'ın iki teorisini kapsar. Bunlar özel görecelik ve genel göreceliktir.

Matematiksel fizik, matematik ve fizik arasındaki alakayla ilgilinen bilimsel disiplindir. Matematiksel fiziğin neyi içerip içermediği ile ilgili tam bir mutabakat yoktur. Ancak Journal of Mathematical Physics konuyla ilgili bir tanım yapar: Matematiğin fiziksel sorunlara uygulanması ve fiziksel kuramlar için matematiksel yöntemlerin uygunluğunun geliştirilmesi.

<span class="mw-page-title-main">Klasik fizik</span> fizik dalı

Klasik fizik tamamlanmış veya uygulanabilir olan fiziğin, eski tarihlerde düşünülmüş modern teorilerle ilgilenir. Şu an kabul edilmiş bir teori modern sayılıyorsa ve o teorinin giriş cümlelerinde başlıca paradigma değişiminden bahsediliyorsa, eski teorilere genellikle “klasik” denilir. Bir klasik teorinin tanımı aslında içeriğine bağlıdır. Klasik fizik kavramı, modern fizik için fazlasıyla karmaşık olan belirli durumlarda kullanılır.

<span class="mw-page-title-main">Fizik tarihi</span> fizik biliminin tarihi

Fizik, felsefe ürünü bir çalışma alanıdır ve bu yüzden 19. yüzyıla kadar doğa felsefesi diye adlandırıldı. Ünlü fizik bilgini Isaac Newton (1642-1726) bile temel yapıtını "Doğa Felsefesinin Matematiksel İlkeleri" olarak adlandırmış ve kendisini de bir doğa filozofu olarak görmüştür. Günümüzde ise fizik; madde, enerji ve bunların birbiri arasındaki ilişkiyi inceleyen bir bilim dalı olarak tanımlanır. Fizik bir bakıma en eski ve en temel kuramsal bilimdir; onun keşifleri doğa bilimleri'nin her alanı hakkındadır çünkü madde ve enerji; doğanın temel ögeleridir. Diğer bilim dalları genellikle kendi alanlarıyla sınırlıdır ve fizikten sonradan ayrılıp bir bilim dalı olmaya hak kazanmış diye düşünülebilinir. 16. yüzyılda fizik doğa bilimlerinden ayrılmış, Rönesans dönemi sonrasında hızla artan bilgi birikimi ile mekanik, optik, akustik, elektrik gibi alt bilim dalları ortaya çıkmıştır. Fizik günümüzde klasik fizik ve modern fizik olarak ikiye ayrılır.

Mach prensibi, belirli bir bölgedeki hareketin başka bir referans noktasına göre hareketin belirlenmesi büyük ölçekteki madde dağılımına dayalı olduğunu belirtir. Teorik fizikteki, yerçekimi teorilerinden olan Mach prensibi Einstein tarafından isimlendirilmiştir. Fikir filozof Ernst Mach'a atfedilir.

Deneysel fizik, evren hakkında bilgi toplamak için fiziksel olguları gözlemleyen fizik disiplinleri ve alt disiplinleridir. Yöntemleri, Cavendish deneyi gibi basit deney ve gözlemlerden, Büyük Hadron Çarpıştırıcısı gibi komplike deneylere kadar disiplinleri arasında farklılıklar gösterir.

<span class="mw-page-title-main">Mutlak zaman ve mekan</span>

Aslen Sir Isaac Newton tarafından Doğa Felsefesinin Matematiksel İlkeleri adlı kitabında tanıtılan mutlak zaman ve mekan kavramları Newton mekaniğini kolaylaştıran teorik bir temel sağlamıştır. Newton'a göre, mutlak zaman ve mekan sırasıyla nesnel gerçekliğin bağımsız yönleridir. Mutlak, gerçek ve matematiksel zaman, kendisi ve kendi doğası gereği değişmeyen ve değiştirilmeyen şekilde akar ve diğer bir deyişle ‘süre’ denir; göreceli, görünür ve genel zaman, hareketle ifade edilen sürenin makul ve dış ölçüsüdür ki bu da genellikle ‘gerçek zaman’ olarak adlandırılır.

Optik, Mısır ve Mezopotamyalılar tarafından geliştirilen lenslerle başlamış ve Yunan ve Hint filozofları tarafından geliştirilen ışık ve vizyon teorileri takip etmiştir.

Aristoteles fiziği veya Aristo fiziği, Yunan filozof Aristoteles'in eserlerinde tanımladığı doğa bilimlerin bir biçimidir. Fizik kitabında Aristoteles, fizikte değişimin genel prensiplerini belirler: yaşayan ve ölü, ilahi ve dünyevi, tüm hareketlilikleri içeren, mekana göre ve boyut ya da miktara göre değişen, bir türün niteliksel değişikliği; ve olmak ve yok olmak.

<span class="mw-page-title-main">Üç cisim problemi</span>

Fizikte, özellikle de klasik mekanikte, üç cisim problemi, üç noktalı kütlelerin başlangıç konumlarını ve hızlarını almayı ve sonraki yörüngelerini Newton'un hareket yasalarını ve Newton'un evrensel kütleçekim yasasını kullanarak hesaplamayı içerir. iki cisim problemlerinin aksine genel bir kapalı form çözümü yoktur. Üç cisim birbirinin yörüngesinde olduğunda, ortaya çıkan dinamik sistem çoğu başlangıç koşulu için kaotiktir ve cisimlerin hareketlerini tahmin etmenin tek yolu onları sayısal yöntemler kullanarak hesaplamaktır.