İçeriğe atla

Kirişler çokgenleri için Japon teoremi

Dışbükey bir kirişler çokgeni, herhangi bir şekilde üçgenlere ayrıldığında ve bu şekilde oluşturulan her üçgene bir iç teğet çember çizildiğinde Japon teoremi, bu üçgenlerin iç teğet çemberlerinin yarıçapları toplamının, seçilen üçgenlemeden bağımsız bir şekilde sabit olduğunu belirtir. Bu teorem, Carnot teoremi kullanılarak kanıtlanabilir. Japon matematikçilerin eski bir geleneğine göre, bu teorem 1800'de tanrıları ve yazarı onurlandırmak için bir Japon tapınağına asılan tabletlere yazılmış bir Sangaku problemiydi.[1]

Açıklama

yeşil çemberlerin yarıçaplarının toplamı = kırmızı çemberlerin yarıçaplarının toplamı

Geometride, Japon teoremi, bir kirişler çokgeni üçgenlere nasıl bölünürse bölünsün (üçgenleştirme), üçgenlerin iç teğet çemberlerinin yarıçapları toplamının sabit olduğunu belirtir.[2] :p. 193

Tersine, eğer iç teğet üçgenlerin yarıçapları toplamı üçgenlere ayırmadan bağımsız ise, o zaman çokgen kirişler çokgenidir. Japon teoremi, Carnot teoremini takip eder; bu bir Sangaku problemidir.

İspat

Bu teorem, ilk önce özel bir durumu ispatlayarak kanıtlanabilir: Bir kirişler dörtgeni nasıl üçgenleştirilse de (üçgenlere ayrılırsa ayrılsın), üçgenlerin iç teğet çemberlerinin toplamı sabittir.

Dörtgen durumu kanıtladıktan sonra, kirişler çokgeni teoreminin genel durumu doğrudan bir sonuçtur. Dörtgen kuralı, bir kirişler çokgeninin genel bir bölümünün dörtgen bileşenlerine uygulanabilir ve kuralın tekrarlanarak uygulanması, bir köşegeni "çevirme", her "çevirme" iç teğet çember yarıçapları toplamını sağlayacak şekilde herhangi bir bölümden olası tüm bölümleri oluşturacaktır.

Dörtgen durum, kirişler dörtgenleri için Japon teoreminin basit bir genişlemesinden kaynaklanır; bu, dörtgenin iki olası üçgenlemesine karşılık gelen iki çift iç teğet çember merkezi tarafından, bir dikdörtgenin oluşturulduğunu gösterir. Bu teoremin adımları, temel yapıcı Öklid geometrisinin ötesinde hiçbir şey gerektirmez.[3]

Köşegenlere paralel kenarları olan ve dikdörtgenin köşelerine teğet olan bir paralelkenarın ilave çizimi ile, döngüsel çokgen teoreminin dörtgen durumu birkaç adımda kanıtlanabilir. İki çiftin yarıçaplarının toplamlarının eşitliği, inşa edilen paralelkenarın bir eşkenar dörtgen olması koşuluna eşittir ve bu, çizimde kolayca gösterilebilir.

Dörtgen durumunun bir başka kanıtı Wilfred Reyes'e (2002) dayanmaktadır.[4] Kanıt olarak, hem kirişler dörtgenleri için Japon teoremi hem de kirişler çokgeni teoreminin dörtgen durumu, Thébault'un III. problemi'nin bir sonucu olarak kanıtlanmıştır.

Ayrıca bakınız

Notlar

  1. ^ Johnson, R. A (1929), Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, Boston, MA: Houghton Mifflin, s. 193, 21 Mart 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 23 Aralık 2020 
  2. ^ Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
  3. ^ Japanese Temple Geometry. Manitoba, Canada: Charles Babbage Research Center. 1989. ss. 125-128. ISBN 0919611214. 
  4. ^ Reyes (2002). "An Application of Thébault's Theorem" (PDF). Forum Geometricorum. 2: 183-185. 24 Ekim 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 2 Eylül 2015. 

Kaynakça

Dış bağlantılar

İlave okumalar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Brianchon teoremi</span>

Geometride Brianchon teoremi, bir konik kesit etrafındaki bir altıgen ile sınırlandırıldığında, ana köşegenlerinin tek bir noktada kesiştiğini belirten bir teoremdir. Adını Fransız matematikçi Charles Julien Brianchon'dan (1783–1864) almıştır.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

Carnot teoremi şunlara işaret edebilir:

Matematikte, genelleştirilmiş Batlamyus teoremi olarak da bilinen Casey teoremi, adını İrlandalı matematikçi John Casey'den alan Öklid geometrisindeki bir teoremdir.

<span class="mw-page-title-main">Eş iç teğet çemberler teoremi</span>

Geometride, eş iç teğet çemberler teoremi bir Japon Sangaku'sundan türetilir ve aşağıdaki yapıya ilişkindir: belirli bir noktadan belirli bir çizgiye bir dizi ışın çizilir, öyle ki bitişik ışınlar ve taban çizgisi tarafından oluşturulan üçgenlerin iç teğet çemberleri eşittir. Çizimde eş mavi çemberler, açıklandığı gibi ışınlar arasındaki mesafeyi tanımlar.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

Leonhard Euler'in temel dörtgen geometrisindeki birçok sonucundan biri, iç içe uzanan iki belirli çember için Öklid düzleminde, hem daha büyük çemberin kirişler dörtgeni hem de daha küçük olana teğet olan bir teğetler dörtgeni olan bir dışbükey dörtgen bulunması problemiyle ilgilidir. Euler bunun için, dairenin merkezi ile bir düzlem üçgenin merkezi arasındaki mesafeye ilişkin teoremindekiyle yakından ilişkili olan bir denklem buldu. Denklemin ilk yayınlanmış sunumu ve türetilmesi, Euler'in sekreteri Nikolaus Fuß tarafından 1798'de sağlandı.

<span class="mw-page-title-main">Çift merkezli çokgen</span>

Geometride, çift merkezli (bicentric) çokgen, teğet bir çokgendir ve aynı zamanda döngüsel yani kirişler dörtgenidir - yani, çokgenin her köşesinden geçen bir çevrel çember içine çizilmiştir. Tüm üçgenler ve tüm düzgün çokgenler çift merkezlidir. Öte yandan, kenarları eşit olmayan bir dikdörtgen çift merkezli değildir, çünkü hiçbir çember dört kenara da teğet olamaz.

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kirişler dörtgenleri için Japon teoremi</span>

Geometride, Japon teoremi, bir kirişler dörtgeni içindeki belirli üçgenlerin iç teğet çember lerinin merkezlerinin bir dikdörtgenin köşeleri olduğunu belirtir.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.

<span class="mw-page-title-main">Kirişler dörtgeni</span> tüm köşeleri tek bir çember üzerinde yer alan dörtgen

Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.

Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.

<span class="mw-page-title-main">Pompeiu teoremi</span>

Pompeiu teoremi, Romanyalı matematikçi Dimitrie Pompeiu tarafından keşfedilen bir düzlem geometrisi sonucudur. Teorem basittir, ancak klasik değildir. Aşağıdakileri ifade eder:

Bir eşkenar üçgen verildiğinde Düzlemde ABC ve ABC üçgeninin düzleminde bir P noktası, PA, PB ve PC uzunlukları bir üçgenin kenarlarını oluşturur.