İçeriğe atla

Kiriş (geometri)

Geometride kiriş, bir çemberde, iki uç noktası da çemberin üstünde bulunan doğru parçası. Sekant, sekant doğrusu veya kesen, bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan kısmıdır. Kiriş daha genel anlamıyla, herhangi bir eğrinin iki noktasını birleştiren doğru parçasıdır. Çemberin merkezinden geçen kiriş, aynı zamanda çemberdeki en uzun kiriş, o çemberin çapıdır.

Kırmızı çizgi BX bir kiriştir.
(AB çemberin çapı)

Çember kirişleri

Bir çemberin kirişleri şu özellikleri gösterir:

  1. Uzunluğu eşit kirişlerin çemberin merkezine olan uzaklıkları eşittir.
  2. Kirişlere ait orta dikmeler çemberin merkezinden geçer.
  3. Eğer AB ve CD gibi iki kiriş bir P noktasında kesişiyorsa, bu durumda AP·PB = CP·PD (nokta kuvveti teoremi) eşitliği sağlanır.

Bir kiriş ile arkasında kalan yayıarasındaki alan daire parçası adını alır.

Trigonometride kirişler

Kirişler trigonometrinin ilk gelişim döneminde sıkça kullanılmıştı. Hiparkos tarafından hazırlanmış olan tarihte bilinen ilk trigonometrik tablo, her 7,5 derece için kiriş fonksiyonun değerini listelemekteydi. İskenderiyeli Batlamyus yazdığı astronomi kitabında, 0,5 ile 180 derece arasında her yarım derece için değerleri vererek daha gelişmiş bir kirişler tablosu oluşturmuştu.

Kiriş fonksiyonu solda verilen şekildeki gibi tanımlanır. Bir açıya ait kiriş, birim çemberde, bu açının çember üzerindeki iki noktası arasındaki uzunluktur. Eğer bu noktalardan biri (1,0), diğeri de (cos , sin ) şeklinde seçilirse, kiriş fonksiyonu ile modern sinüs fonksiyonu arasında ilişki yazılabilir. Bu durumda Pisagor teoremi kullanılarak kiriş uzunluğu şöyle hesaplanır:

Son adımda ise yarım açı formülü kullanılır. Modern trigonometri sinüs fonksiyonuna dayandığı gibi eski dönem trigonometri kiriş fonksiyonu üzerine kuruludur. Kiriş fonksiyonu bilinen birçok modern eşitliğin eşdeğerini sağlar:

EşitlikSinüs fonk.Kiriş fonk.
Pisagor
Yarım açı

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Trigonometri</span> üçgenlerin açı ve kenar bağıntılarını konu alan geometri dalı

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Gül (matematik)</span>

Matematikte gül veya rodonea, kutupsal koordinat sisteminde çizilmiş bir sinüs ya da kosinüs eğrisine denir. Gül eğrisi, aşağıdaki kutupsal denklemle ifade edilir:

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

<span class="mw-page-title-main">Trigonometri tarihi</span>

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı. Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı. Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: