İçeriğe atla

Kirchhoff kanunları

Kirchhoff yasaları karmaşık devrelerin analizinde kullanılan, elektrik yükünün ve enerjisinin korunumuna dayalı, ilk kez 1845 yılında Gustav Kirchhoff (Kirhhof okunur) tarafından tanımlanan iki eşitliktir.[1]

Kirchhoff'un akım yasası

Bu yasa aynı zamanda birinci yasa ve düğüm yasası olarak da adlandırılır. Bu yasaya göre herhangi bir düğüm noktasına gelen akımların toplamı, çıkan akımların toplamına eşittir.

Düğüm noktasına giren akımları, i2 ve i3, düğüm noktasından çıkan akımlar i1 ve i4. Buna göre i1 + i4 =i2 + i3

Daha teknik anlamda Kirchhoff akım yasası, Ampere yasasının diverjansı ve Gauss Yasası'nın birleştirilmesiyle şu şekilde elde edilir:

Bu yasa, yük korunumunun ifadesidir. Herhangi bir noktaya ne kadar akım girerse, o kadar da terk etmek zorundadır.

Kirchhoff'un gerilim yasası

Kapalı bir göz (çevre, loop, ilmek) içerisindeki toplam gerilim düşümü sıfırdır. Ya da kapalı bir çevrede harcanan gerilimlerin toplamı, sağlanan gerilimlerin toplamına eşittir.

İlmekteki tüm potansiyel farkların toplamı sıfırdır. v1 + v2 + v3 - v4 = 0

Kaynakça

  1. ^ Kalil T. Swain Oldham (2008). The doctrine of description: Gustav Kirchhoff, classical physics, and the "purpose of all science" in 19th-century Germany (Tez). University of California, Berkeley. s. 52. Docket 3331743. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Ohm kanunu</span> iki nokta arasındaki iletken üzerinden geçen akımın, potansiyel farkla doğru; iki nokta arasındaki dirençle ters orantılı olması

Ohm yasası, bir elektrik devresinde iki nokta arasındaki iletken üzerinden geçen akım, potansiyel farkla doğru; iki nokta arasındaki dirençle ters orantılıdır.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Gauss yasası</span>

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

Akım yoğunluğu elektrik devresinde yoğunluğun bir ölçüsüdür. Vektör olarak tanımlanır ve elektrik akımının kesit alana oranıdır. SI'de akım yoğunluğu amper/metrekare veya coulomb/saniye/metrekare cinsinden ifade edilebilir.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

<span class="mw-page-title-main">Manyetizma için Gauss yasası</span>

Manyetizma için Gauss yasası, Maxwell'in klasik elektromanyetizmayı açıklayan dört denkleminden biridir. Bu yasa kapalı bir yüzeyden geçen net manyetik akının sıfır olduğunu gösterir. Bunun sebebi manyetik alan çizgilerinin belli bir başlangıç ve bitiş noktasına sahip olmayıp kapalı ilmekler oluşturmasıdır. Bu yargı, yalıtılmış manyetik kutupların bu güne kadar deneysel olarak algılanamadığı gerçeğine dayanmaktadır. Manyetizmada elektriğin tersine yükler yerine çiftkutuplar vardır. Eğer bir gün manyetik tekkutup elde edilebilirse (yalıtılırsa) bu yasanın gözden geçirilmesi gerekecektir.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.

Fizikte yük korunumu, izole bir sistemdeki toplam elektrik yükünün asla değişmemesi prensibi. Net elektrik yükü miktarı, pozitif yükün miktarı eksi evrendeki negatif yükün miktarı her zaman korunur. Fiziksel koruma kanunu olarak kabul edilen yük korunumu, herhangi bir alan hacmindeki elektrik yükü miktarındaki değişimin, hacme akan yük miktarına eksi hacimden dışarı akan yük miktarına eşit olduğu anlamına gelir. Temel olarak, bir bölgedeki yük miktarı ile bu bölgeye giren ve çıkan yük akışı arasındaki yük yoğunluğu ve akım yoğunluğu arasındaki süreklilik denklemi ile verilen bir muhasebe ilişkisidir.

<span class="mw-page-title-main">Düğüm Gerilimleri Analizi</span>

Elektrik devreleri analizinde, düğüm analizi, düğüm gerilimi analizi veya dal akımı yöntemi, elektrik devresindeki düğümlerdeki voltajı dallardaki akımlar cinsinden belirlemeye yarar.

Pens ampermetre elektrik devrelerinde kullanılan bir ölçü aletidir. Alternatif akım ölçmekte kullanılır. Ancak klasik ampermetrelerden önemli bir farkı vardır. Ampermetreler devreye seri girerler. Ölçü yapmak için devreyi açıp ampermetreyi devreye seri olarak bağlamak gerekir. Bazı durumlarda bu çok güç bir işlem olur. Pens ampermetre farklı bir ilke ile çalıştığından devreye seri olarak girmez. Hatta devre elemanlarına temas bile etmez. Bu yönüyle pens ampermetre özellikle yüksek akım taşıyan devrelerde tercih edilen bir ölçü aletidir.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.