İçeriğe atla

Ki-kare dağılımı

ki-kare
Olasılık yoğunluk fonksiyonu
Yığmalı dağılım fonksiyonu
Parametreler serbestlik derecesi
Destek
Olasılık yoğunluk fonksiyonu (OYF)
Birikimli dağılım fonksiyonu (YDF)
Ortalama
Medyanyaklaşık olarak
Mod eğer
Varyans
Çarpıklık
Fazladan basıklık
Entropi
Moment üreten fonksiyon (mf) eğer
Karakteristik fonksiyon

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım (x2 dağılımı) özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

Bu dağılım, gamma dağılımından elde edilir.

x, ve n parametreleri ile gamma dağılımına sahip olsun:

olur.

Burada ve alınırsa, elde edilen yeni dağılıma, serbestlik derecesiyle ki-kare dağılımı denir ve ile gösterilir.

x, serbestlik derecesiyle ki-kare dağılımına sahip ise:

ki-kare 1 n(0.1)'e eşittir olur.

Teorem 1

ise olur.

Teorem 2

rassal değişkenler N(0,1) dağılımına sahip olsun.

ise olur.

Teorem 3

varyansı bilinen, dağılımına sahip rastgele örneklem ve örneklem varyansı olmak üzere:
olur.

Karakteristikleri

Olasılık yoğunluk fonksiyonu

Ki-kare dağılım için olasılık yoğunluk fonksiyonu şu olur:

Burada bir Gamma fonksiyonu bulunduğunu gösterir ve bu yarım-tamsayılar için özel değerler gösterir.

Yığmalı dağılım fonksiyonu

Ki-kare dağılımının yığmalı dağılım fonksiyonu şudur:

burada aşağı kısmı tamamlanmamış Gamma fonksiyonu ve ise tanzim edilmiş Gamma fonksiyonu olur.

Ki-karenin için verilen tablolar (biri aşağıda verilmiştir) yığmalı dağılim fonksiyonundan elde edilmektedir. Bu tablolar birçok değişik kaynaklardan bulunabilir. Örneğin bu fonksiyon için tablolar spreadsheet ve istatistik program paketlerinde bulunmaktadır.

Karakteristik fonksiyonu

Ki-kare dağılımının karakteristik fonksiyonu şöyle yazılır:

Özellikleri

  • Ki-kare dağılımı cikarimsal istatistik analizde epeyce kullanış alanı bulmuştur. Parametrik istatistik olarak varyans değeri güvenlik aralığı ve hipotez testi, parametrik olamayan uygunluk iyiliği testi, olumsallık tablosu üzerinde bağımsızlık testi ve ki-kareye bağlı ortaklılık katsayıları, uzaklık ölçüleri vb.
  • Varyanslar analizinde F-dagiliminin iki ki-kare dağılımının oranından ortaya çıkması dolayışıyla önemli rol oynamaktadır.

Normal yaklaşım

Eğer ise, limitte sonsuzluğa yaklaştıkça normal dağılıma yaklaşır. Ancak bu eğilim (çarpıklık ve basıklık fazlalığı olduğundan dolayı) yavaş gelişmektedir. Ki-kare dağılımının iki değişik dönüşüm fonksiyonu normalliğe çok daha hızla yaklaşma göstermektedir:

Fisher ispat etmiştir ki ifadesi, yaklaşık olarak ortalaması olan ve varyans değeri 1 olan bir normal dağılım gösterir.

Aynı normal yaklaşım sonucuna moment karşılaştırması yapılarak da erişilebilir. Bunu görmek için ki-dağılım gösteren rassal değişken in ortalaması ve varyansı izlensin. Bunlar sırasıyla şöyle verilir:

ve

Burada bir Gamma fonksiyonudur. ifadeli gamma fonksiyonunun özel oranı (particular ratio) şu seri halinde açılabilir:[1]

olduğu halde bu oran için şöyle yaklaşım bulunur:

Sonra basitleşen moment karşılaştırılması sonuçları şu yaklaşık dağılımı verirler;

,

Bundan da şu ifade hemen çıkartılabilir\:

.

Wilson ve Hilferty [1931] göstermiştir ki ifadesi, ortalaması ve varyansı olan bir normal dağılıma yaklaşıktır.

serbestlik derecesi olan bir ki-kare dağılımı gösteren bir rassal değişken için beklenen değer olur. Aynı dağılımın medyan değeri yaklaşık olarak şu ifade ile verilir:

Eğer serbestlik derecesi 2 ise üstel dağılım ile aynı dağılımdır.

Enformasyon entropisi

Enformasyon entropisi ifadesi şöyle verilir:

Burada bir Digamma fonksiyonudur.

İlişkili dağılımlar

  • Serbestlik derecesi 2ye eşit olan için bir üstel dağılım olur.
  • Normal dağılım gösteren ve birbirinden bağımsız olan değişkenleri için ise, bir ki-kare dağılımı gösterir.
  • Eğer dağılımlarının sıfır olmayan ortalamaları varsa, o halde bir merkezsel olmayan ki-kare dağılımndan çıkartılmıştır.
  • olduğundan dolayı, ki-kare dağılımı bir gamma dağılımının özel halidir.
  • Eğer verilmiş serbestlik dereceleri ile ve birbirinden bağımsız iken ise, bir F-dağılımı gösterir.
  • ifadesi için değişkenleri bağımsız ve ise, o halde ifadesi bir ki-kare dağılımı gösterir.
  • Eğer ki-kare dağılımı gösterirse, o halde ifadesi de ki-kare dağılımı gösterir.
  • Özellikle, eğer (yani 2 serbestlik derecesi gösteren ki-kare ise), o halde ifadesi Rayleigh dağılımı gösterir.
  • Eğer bağımsiz ama aynı dağılımlı, yani hepsi normal dağılım gösteren, rassal değişkenlerse, o halde

olur; burada dir.

  • Eğer , ise, o halde olur.
Çeşitli ki ve ki-kare dağılımları
İsimİstatistik
Ki-kare dağılımı
Merkezsel olmayan ki-kare dağılımı
Ki dağılımı
Merkezsel olmayan ki dağılımı

Ki kare kritik değerler tablosu

g serbestlik derecesi için yukarı kuyruk alanının (olasılığın) α olmasına karşıt olan ki2 kritik değeri

+-----+-----------------------------------------------------------------------+
| \  α|                                                                       |
|  \  | 0.995  0.91   0.925  0.95   0.90   0.10   0.05   0.025  0.01   0.005  |
|g  \ |                                                                       |
+-----+-----------------------------------------------------------------------+
|  1  |  0.00   0.00   0.00   0.00   0.02   2.71   3.84   5.02   6.63   7.88  |
|  2  |  0.01   0.02   0.05   0.10   0.21   4.61   5.99   7.38   9.21  10.60  |
|  3  |  0.07   0.11   0.22   0.35   0.58   6.25   7.81   9.35  11.34  12.84  |
|  4  |  0.21   0.30   0.48   0.71   1.06   7.78   9.49  11.14  13.28  14.86  |
|  5  |  0.41   0.55   0.83   1.15   1.61   9.24  11.07  12.83  15.09  16.75  |
|  6  |  0.68   0.87   1.24   1.64   2.20  10.64  12.59  14.45  16.81  18.55  |
|  7  |  0.99   1.24   1.69   2.17   2.83  12.02  14.07  16.01  18.48  20.28  |
|  8  |  1.34   1.65   2.18   2.73   3.49  13.36  15.51  17.53  20.09  21.95  |
|  9  |  1.73   2.09   2.70   3.33   4.17  14.68  16.92  19.02  21.67  23.59  |
| 10  |  2.16   2.56   3.25   3.94   4.87  15.99  18.31  20.48  23.21  25.19  |
| 11  |  2.60   3.05   3.82   4.57   5.58  17.28  19.68  21.92  24.72  26.76  |
| 12  |  3.07   3.57   4.40   5.23   6.30  18.55  21.03  23.34  26.22  28.30  |
| 13  |  3.57   4.11   5.01   5.89   7.04  19.81  22.36  24.74  27.69  29.82  |
| 14  |  4.07   4.66   5.63   6.57   7.79  21.06  23.68  26.12  29.14  31.32  |
| 15  |  4.60   5.23   6.26   7.26   8.55  22.31  25.00  27.49  30.58  32.80  |
| 16  |  5.14   5.81   6.91   7.96   9.31  23.54  26.30  28.85  32.00  34.27  |
| 17  |  5.70   6.41   7.56   8.67  10.09  24.77  27.59  30.19  33.41  35.72  |
| 18  |  6.26   7.01   8.23   9.39  10.86  25.99  28.87  31.53  34.81  37.16  |
| 19  |  6.84   7.63   8.91  10.12  11.65  27.20  30.14  32.85  36.19  38.58  |
| 20  |  7.43   8.26   9.59  10.85  12.44  28.41  31.41  34.17  37.57  40.00  |
| 21  |  8.03   8.90  10.28  11.59  13.24  29.62  32.67  35.48  38.93  41.40  |
| 22  |  8.64   9.54  10.98  12.34  14.04  30.81  33.92  36.78  40.29  42.80  |
| 23  |  9.26  10.20  11.69  13.09  14.85  32.01  35.17  38.08  41.64  44.18  |
| 24  |  9.89  10.86  12.40  13.85  15.66  33.20  36.42  39.36  42.98  45.56  |
| 25  | 10.52  11.52  13.12  14.61  16.47  34.38  37.65  40.65  44.31  46.93  |
| 26  | 11.16  12.20  13.84  15.38  17.29  35.56  38.89  41.92  45.64  48.29  |
| 27  | 11.81  12.88  14.57  16.15  18.11  36.74  40.11  43.19  46.96  49.64  |
| 28  | 12.46  13.56  15.31  16.93  18.94  37.92  41.34  44.46  48.28  50.99  |
| 29  | 13.12  14.26  16.05  17.71  19.77  39.09  42.56  45.72  49.59  52.34  |
| 30  | 13.79  14.95  16.79  18.49  20.60  40.26  43.77  46.98  50.89  53.67  |
+-----+-----------------------------------------------------------------------+

Kaynak: Kritik değerler İtalyanca Wikipedia için R (software) serbest programının qchisq(,1:30) fonksiyonu kullanılarak bulunmuştur.

Serbestlik derecesi g>30 olursa kritik değerleri bulmak için şu ifadeyi kullanmak yeterli olacaktır.

χ²α,g = 1/2 ( zα + √(2g-1) )²

Burada zα Standart Normal N(0,1) için kritik değerdir (örneğin z0,95 = 1,645 olur.)

Ayrıca bakınız

  • Cochran'in teoremi
  • Ters-ki-kare dağılımı
  • Serbestlik derecesi (istatistik)
  • Bağımsız sınamaları birleştirmek için Fisher'in yöntemi
  • Merkezsel olmayan ki-kare dağılımı

Kaynakça

  1. ^ "Arşivlenmiş kopya" (PDF). 15 Ekim 2008 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 6 Nisan 2008. 

Dış bağlantılar

Yale University Stats 101 kodlu ders için ornekler hipotez sinamasi ve parametre tahminleri konularini kapsar.


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">F-dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, F-dağılımı bir sürekli olasılık dağılımdır. Bu dağılımı ilk bulan istatistikçiler olan R.A. Fisher veGeorge W. Snedecor adlarına bağlı olarak Snedecor'un F dağılımı veya Fisher-Snedecor dağılımı olarak da anılmaktadir.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

İstatistik bilim dalında D'Agostino'nun K2 sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. Örneklem basıklık ve çarpıklık ölçülerinin dönüşümlerinden elde edilmiştir. K2 istatistiği şöyle elde edilir:

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematikte bir Taylor serisi olan özel fonksiyon Legendre chi fonksiyonu aynı zamanda bir Dirichlet serisidir.

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

Lommel diferansiyel denklemi Bessel diferansiyel denklemi'nin homojen olmayan formudur:

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,