İçeriğe atla

Kesişme teoremi

Thales teoremi (aynı adı taşıyan başka bir teoremle karıştırılmamalıdır) veya temel orantı teoremi olarak da bilinen kesişme teoremi, kesişen iki çizginin bir çift paralelle kesilmesi durumunda oluşturulan çeşitli çizgi parçalarının oranları hakkındaki temel geometride önemli bir teoremdir. Benzer üçgenlerdeki oranlarla ilgili teoreme eşdeğerdir. Geleneksel olarak Yunan matematikçi Thales'e atfedilir.[1]

Formülasyon

'nin iki çizginin kesişme noktası olduğunu ve , 'nin iki paralelle ilk çizginin kesişim noktası olduğunu varsayalım, öyle ki , 'den 'dan daha uzaktır ve benzer şekilde , ikinci doğrunun iki paralelle kesişimleridir, öyle ki , 'den 'den daha uzaktır.

1. İlk satırdaki herhangi iki doğru parçasının oranları, ikinci satırdaki ilgili doğru parçalarının oranlarına eşittir:

,
,

2. ile başlayan aynı çizgi üzerindeki iki doğru parçasının oranı, paralellerdeki doğru parçalarının oranına eşittir:

3. İlk ifadenin tersi de doğrudur, yani kesişen iki çizgi rastgele iki çizgi tarafından kesilirse ve

ise kesişen iki çizgi paraleldir. Ancak ikinci ifadenin tersi doğru değildir.

4. 'de kesişen ikiden fazla çizgi varsa, paraleldeki iki doğru parçasının oranı, diğer paraleldeki ilgili doğru parçalarının oranına eşittir:

,

Aşağıdaki ikinci grafikte üç çizgili duruma bir örnek verilmiştir.

İlk kesişim teoremi, çizgilerin bölümlerinin oranlarını gösterir, ikincisi, çizgilerin bölümlerinin oranları ile birlikte paralellerin bölümlerini, son olarak üçüncüsü, paralellerin bölümlerinin oranlarını gösterir.

İlgili kavramlar

Benzerlik ve benzer üçgenler

Kesişme teoremi uygulanabilecek şekilde iki benzer üçgenin düzenlenmesi

Kesişme teoremi, benzerlik ile yakından ilgilidir. Benzer üçgenler kavramına eşdeğerdir, yani benzer üçgenlerin özelliklerini kanıtlamak için kullanılabilir ve benzer üçgenler kesişme teoremini kanıtlamak için kullanılabilir. Özdeş açıları eşleştirerek, her zaman birbirine benzer iki üçgen elde edilebilir, böylece kesişme teoreminin uygulandığı durum elde edilmiş olur. Ayrıca tersine, kesişme teoremi durumu her zaman iki benzer üçgen içerir.

Vektör uzaylarında skaler çarpım

Normlu bir vektör uzayında, skaler çarpım ile ilgili aksiyomlar (özellikle ve ) kesişme teoreminin geçerli olmasını sağlar. Buradan da aşağıdaki sonuca ulaşılır:

Uygulamalar

Pergel ve cetvel çizimlerinin cebirsel formülasyonu

Yunan matematiğinde ele alınan üç klasik matematik problemi

Yunanların pergel ve düz kenarlı cetvelle yapılan çizimler açısından ortaya koyduğu temel geometride üç ünlü problem vardır:[2][3]

  1. Daireyi kareleştirme
  2. Küpü iki katına çıkarma
  3. Açıyı üçe bölme

Üçünün de 19. yüzyılda verilen araçlarla, o dönemde mevcut olan cebirsel yöntemlerle imkansız olduğunun gösterilmesi nihayet 2000 yıldan fazla sürdü.

Bunları cisim genişlemesi kullanarak cebirsel terimlerle yeniden formüle etmek için, cisim işlemlerini pergel ve düz kenarlı cetvelle yapılan çizimlerle eşleştirmek gerekir (Bkz. inşa edilebilir sayı).

Özellikle, verilen iki çizgi parçası için, uzunluğu diğer ikisinin uzunluklarının çarpımına eşit olacak şekilde yeni bir çizgi parçasının oluşturulabileceğinden emin olmak önemlidir. Benzer şekilde, uzunluğundaki bir doğru parçası için uzunluğunda yeni bir çizgi parçası inşa edilebilmelidir. Kesişme teoremi, her iki durumda da böyle bir yapının mümkün olduğunu göstermek için kullanılabilir.

Bir çarpımın inşası

Bir evrik değerin inşası

Bir çizgi parçasını belirli bir oranda bölme

Rastgele bir doğru parçasını bir oranında bölmek için, A'da ile tek ayak olacak şekilde rastgele bir açı çizin. Diğer bacakta eşit uzaklıkta noktalar oluşturun, ardından çizgiyi son noktadan ve B ve noktasından paralel bir çizgi çizin. Bu paralel çizgi 'yi istenen oranda böler. Sağdaki grafik bir çizgi parçasının oranında bölümünü göstermektedir.[4]

Ölçme ve tetkik

Keops piramidinin yüksekliği

parçaları ölçmek
ve 'yi hesaplamak

Bazı tarihsel kaynaklara göre, Yunan matematikçi Thales, Keops piramidinin yüksekliğini belirlemek için kesişme teoremini uyguladı.[1] Aşağıdaki açıklama, piramidin yüksekliğini hesaplamak için kesişme teoreminin kullanımını göstermektedir. Ancak, Thales'in kaybolan orijinal çalışmasını anlatmamaktadır.

Thales, piramidin tabanının uzunluğunu ve direğin yüksekliğini ölçtü. Sonra günün aynı saatinde piramidin gölgesinin uzunluğunu ve direğin gölgesinin uzunluğunu ölçtü. Bu şekilde aşağıdaki verileri elde etti:

  • direğin yüksekliği (A): 1,63 m
  • direğin gölgesi (B): 2 m
  • piramit tabanının uzunluğu: 230 m
  • piramidin gölgesi: 65 m

Bu verileri kullanarak;

olduğunu hesapladı. A, B ve C'yi bilerek, artık piramidin yüksekliğini hesaplamak için kesişim teoremi uygulanabilir.

Bir nehrin genişliğini ölçmek

Kesişme teoremi, bir nehrin veya gölün genişliği, yüksek binaların boyunu veya benzeri gibi doğrudan ölçülemeyen bir mesafeyi belirlemek için kullanılabilir. Sağdaki grafik bir nehrin genişliğini ölçmeyi göstermektedir. ,, bölümleri ölçülür ve istenen mesafeyi hesaplamak için kullanılır: .

Üçgen ve yamuklarda paralel doğrular

Kesişme teoremi, belirli bir çizimin paralel doğru (bölümleri) sağladığını kanıtlamak için kullanılabilir.

İki üçgen kenarın orta noktaları birleştirilirse, ortaya çıkan doğru parçası üçüncü üçgen tarafına paraleldir (üçgenlerin orta nokta teoremi).

Bir yamuğun paralel olmayan iki kenarının orta noktaları birleştirilirse, ortaya çıkan çizgi parçası yamuğun diğer iki tarafına paraleldir.

Teoremin ispatı

Thales teoreminin kanıtı; 25 nolu antropomorfik Neolitik stel, Sion MÖ 2500, Petit-Chasseur nekropolü (Prof. A. Gallay)[5]

Teoremin temel bir kanıtı, oranlarla ilgili temel ifadeleri türetmek için eşit alanlı üçgenler kullanır (iddia 1). Diğer iddialar daha sonra ilk iddia ve çelişkiyi uygulayarak takip eder.[6]

İddia 1

olduğundan, ve yüksekliklerinin uzunluğu eşittir. Bu üçgenler aynı temel çizgiyi paylaştıkları için alanları aynıdır. Yani ve dolayısıyla 'dir. Buradan yola çıkarak;

ve

bulunur. Üçgen alan formülüne girilirse (), aşağıdaki ifadelere dönüşür:

ve

Ortak çarpanların sadeleştirilmesiyle;

(a) ve (b)

Şimdi ve (a)'da yerine yazılırsa:

(b)'yi tekrar kullanmak, aşağıdakileri sadeleştirir:

(c)

İddia 2

A'dan 'ye ilave bir paralel çizin. Bu paralel G'de ile kesişiyor. O halde ve iddia 1'den dolayı ve bu nedenle,

İddia 3

ve 'nin paralel olmadığını varsayın. Daha sonra ile arasındaki paralel çizgi içinde ile kesişir.

doğru olduğundan,

ve diğer yandan iddia 2'den

.

Yani ve , 'nin aynı tarafındalar ve ile aynı mesafeye sahipler, anlamına gelir. Bu bir çelişkidir, dolayısıyla varsayım doğru olamazdı, yani ve gerçekten paraleldir

İddia 4

İddia 4, iki çizgi için kesişme teoremi uygulanarak gösterilebilir.

Notlar

  1. ^ a b Thales'in hiçbir orijinal eseri hayatta kalmadı. Kesişme teoremini veya ilgili bilgiyi ona atfeden tüm tarihsel kaynaklar, ölümünden yüzyıllar sonra yazılmıştır. Diogenes Laertius ve Pliny, kesişme teoremi hakkında kesin konuşmak mümkün olmasa da, ancak yalnızca basit bir gözleme güvenebileceğini, yani günün belirli bir noktasında bir nesnenin gölgesinin uzunluğunun yüksekliğine uyacağını belirten bir açıklama verir. Laertius, filozof Hieronymus'un (MÖ 3. yüzyıl) Thales hakkında yaptığı bir açıklamadan alıntı yapıyor: Hieronymus, [Thales] piramitlerin yüksekliğini oluşturdukları gölgeyle ölçtüğünü ve kendi gölgemizin (yani kendi boyumuz olarak) aynı uzunlukta olduğu saatte gözlemi aldığını söylüyor.. Pliny şöyle yazıyor: Thales, piramitlerin ve diğer tüm benzer nesnelerin yüksekliğini, yani bir cisim ve gölgesinin eşit uzunlukta olduğu anda nesnenin gölgesini ölçerek keşfetti. Bununla birlikte Plutarch, Thales'in kesişme teoremini veya en azından bunun özel bir durumunu bildiğini önerebilecek bir açıklama verir: .. sorun olmadan veya herhangi bir aletin yardımı olmadan [o] sadece piramidin oluşturduğu gölgenin ucuna bir çubuk koydu ve böylece güneş ışınlarının kesişmesiyle iki üçgen yaptı, ... piramidin çubuğa, [piramidin] gölgesinin [çubuğun] gölgesine sahip olduğu aynı orana sahip olması gerektiğini gösterdi.. (Kaynak: MacTutor'un Thales biyografisi 9 Şubat 2013 tarihinde Wayback Machine sitesinde arşivlendi., Plutarch ve Laertius'un (çevrilmiş) orijinal eserleri şunlardır: Moralia, The Dinner of the Seven Wise Men, 147A 17 Şubat 2022 tarihinde Wayback Machine sitesinde arşivlendi. and Lives of Eminent Philosophers, Chapter 1. Thales, para.27 28 Ocak 2019 tarihinde Wayback Machine sitesinde arşivlendi.)
  2. ^ Kazarinoff, Nicholas D. (2003) [1970], Ruler and the Round, Dover, s. 3, ISBN 0-486-42515-0 
  3. ^ Kunz, Ernst (1991). Algebra (Almanca). Vieweg. ss. 5-7. ISBN 3-528-07243-1. 
  4. ^ Ostermann, Alexander; Wanner, Gerhard (2012). Geometry by Its History. Springer. ss. 7. ISBN 978-3-642-29163-0.  (Google Kitaplar'da online copy, s. 7,)
  5. ^ Ostermann Alexander, Wanner Gerhard (2012) Geometry by Its History: Thales and Pythagoras, Undergraduate Texts in Mathematics, s. 4, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29163-0_1
  6. ^ Schupp, H. (1977). Elementargeometrie (Almanca). UTB Schöningh. ss. 124-126. ISBN 3-506-99189-2. 

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

Benzinli motorda, yanma sabit hacimde gerçekleşir, dizel motorda ise yanma sabit basınçta gerçekleşir. Karma çevrimde ise günümüz modern dizel motorlarında olduğu gibi, yanmanın ilk aşaması sabit hacime yakın, son aşaması ise sabit basınca yakın gerçekleşmektedir. Bu yüzden ısının bir miktarının sabit hacimde, geri kalan kısmının da sabit basınçta sisteme verildiği bu çevrime karma çevrim denir.

Elektronvolt (eV) değeri yaklaşık 1.6 x 10−19 J olan enerjiye verilen addır. Tanım olarak bir elektronun, boşlukta, bir voltluk elektrostatik potansiyel farkı katederek kazandığı kinetik enerji miktarıdır. Diğer bir deyişle, 1 volt çarpı elektronun yüküne eşittir. 1 volt temel yük ile çarpıldığında buna eşit olmaktadır.

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Yamuk</span> Yamuk, en az iki kenarı paralel olan dörtgen.K= <math>K = \frac{a + b}{2} \cdot h</math> :

Yamuk, iki kenarı paralel olan dörtgen. Paralel olan kenarlarına "yamuğun tabanları", paralel olmayan kenarlarına ise "yanal kenarlar" adı verilir.

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Gauss yüzeyi</span>

Gauss yüzeyi, üç boyutlu uzayda içinden bir vektör alanın akısı geçen kapalı bir yüzeydir; genellikle elektrik alanı, yerçekim alanı ve manyetik alanı bulmak için kullanılır. rastgele seçilmiş bu kapalı yüzey S = ∂V Gauss yasasıyla ilişkili alan için conjuction olarak bir yüzey integrali sergilenerek kullanılır. Elektrostatik alanın kaynağı olarak elektrik yükünün miktarı ya da yerçekimi alanını kaynağı olarak yerçekimi ağırlığını kapalı alanda hesaplamak için kullanılır. Maddesel olması için, elektrik alan bu metinde, alanın en sık bilinen yüzey şekli olarak tanımlandırıldı. Gauss yüzeyleri genellikle, yüzey integralinin simetrisini basitçe hesaplayabilmek için dikkatle seçildi. Bir Gauss yüzeyi, yüzey üzerindeki her noktanın elektrik alan bileşenleri için, sabit bir normal vektörüne doğru seçilmiş ise, hesaplama zor bir integral gerektirmeyecektir.

<span class="mw-page-title-main">Helmholtz teoremleri</span>

Akışkanlar mekaniğinde, Helmholtz teoremleri, girdap (vorteks) filamanlarının çevresindeki üç boyutlu akışkan hareketlerini tanımlar. İsmini Hermann von Helmholtz'den alan bu teoremler, viskoz olmayan akışlarda ve viskozite etkisinin az olup göz ardı edilebileceği akışlarda geçerlidir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

Matematikte Radon-Nikodym teoremi, aynı ölçülebilir uzayda tanımlanmış iki ölçü arasındaki ilişkiyi ifade eden bir sonuçtur. Burada ölçü ile kastedilen ölçülebilir bir uzayın ölçülebilir alt kümelerine tutarlı bir büyüklük atayan bir küme fonksiyonudur. Ölçü örnekleri arasında alan ve hacim verilebilir.