İçeriğe atla

Kepler–Bouwkamp sabiti

Düzlemsel geometride Kepler–Bouwkamp sabiti (veya çokgen yazma sabiti) şu dizinin bir limiti olarak elde edilir: Yarıçapı 1 olan bir daire alın. Bu daireye bir eşkenar üçgen çizin. Bu üçgenin içine bir daire çizin. İçine bir kare yazın. Bir daire, düzgün beşgen, daire, düzgün altıgen vb. yazın. En son elde edilecek dairenin yarıçapına Kepler–Bouwkamp sabiti denir. Adını Johannes Kepler ve Christoffel Bouwkamp'tan almıştır ve çokgen çevreleyici sabitin tersidir.

Kaynakça

  • Finch, S. R. (2003). Mathematical Constants. Cambridge University Press. 9780521818056. MR 2003519.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yarı büyük ve yarı küçük eksen</span>

Geometride büyük eksen, bir elipsin en uzun çapıdır. Merkezden ve her iki odak noktasından geçen ve çevre uzunluğunun (perimetre) en uzak noktalarında sonlanan bir doğru parçasıdır. Yarı büyük eksen, en uzun yarıçap veya büyük eksenin yarısıdır ve bu nedenle merkezden bir odağa ve çevreye doğru uzanır. Bir elips veya hiperbolün yarı küçük ekseni, yarı büyük eksenle dik açı yapan ve bir ucu konik kesitin merkezinde olan bir doğru parçasıdır. Bir dairenin özel durumu için yarı eksen uzunluklarının her ikisi de dairenin yarıçapına eşittir.

Altın oran, matematikte iki miktardan büyük olanın küçüğe oranı, miktarların toplamının miktarları büyük olanına oranı ile aynı ise altın orandır. Altın oran aynı zamanda antik çağdan bu yana sanat ve mimaride en iyi uyum ve oranları veren düzen bağıntısı olarak kabul edilmekteydi.

Alan veya yüz ölçümü, bir yüzeyin uzayda kapladığı iki boyutlu yer miktarını ölçen bir büyüklüktür. SI birim sisteminde temel alan birimi metrekaredir (m²). Diğer alan birimleri bundan türetilebilir:

Ar = 100 metrekare (m²)
Dekar = 1000 metrekareye (m²)
Hektar = 10.000 metrekare (m²)
Kilometrekare = 1.000.000 metrekare (m²)
<span class="mw-page-title-main">Pergel</span>

Pergel, birbirine üstten eklenmiş iki koldan meydana gelen, çember çizmeye ve küçük mesafeleri ölçmeye yarayan alet. Pergel, geometri şekillerinin çiziminde kullanıldığı gibi çeşitli meslek dallarında da ölçü aleti olarak kullanılmaktadır. Küçük doğru parçaları ve açılar arasındaki mesafeler de pergellerle ölçülür.

Çokgen, düzlemde herhangi ardışık üçü doğrusal olmayan n tane noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillerdir.

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

Platonik cisim, beş katı cisim veya düzgün katı cisim, bütün kenarları eşit ve yüzeyleri düzgün çokgen olan katı cisimdir.

<span class="mw-page-title-main">Altıgen</span>

Bir altıgen, altı kenarı ve altı köşesi olan çokgendir. Ayrıca kenarları ve iç açıları eşitse düzgün altıgen olarak adlandırılır. Düzgün altıgenin iç açılarının her biri 120°'dir. Düzgün altıgen altı eşkenar üçgenden oluştuğu için alanı ve çevresi kolayca bulunabilir. Kenarı a uzunlukta olan düzgün bir altıgenin alanı, bir kenarı a olan bir eşkenar üçgenin alanının 6 katına eşittir. İç açıları toplamı 720 derece, bir dış açısının ölçüsü ise 60 derecedir. Dolayısıyla her bir iç açısının ölçüsü 120 derecedir.

<span class="mw-page-title-main">Ongen</span>

Bir ongen, on açısı ve on kenarı olan çokgendir. Ongenin iç açıları toplamı 1440'tır. Düzgün ongenin bir iç açısı 144'tür. Ongenin dış açıları toplamı ise 360'tır.

<span class="mw-page-title-main">Kepler üçgeni</span>

Kepler üçgeni, kenarları geometrik dizi oluşturan bir dik üçgen. Kepler üçgeninin kenarları altın oranla

<span class="mw-page-title-main">Pergel ve çizgilik çizimleri</span>

Pergel ve çizgilik çizimi, belli uzunlukta doğrular, belli büyüklükte açılar ve diğer geometrik şekilleri çizmek için sadece ideal bir çizgilik ve pergel kullanılmasıdır.

Prizma ya da biçme, genelde en boy ve yükseklik kavramlarına sahip cisimler olarak adlandırılır. Ancak bazı cisimlerin (küre) en ve boyu tam olarak ifade edilememekle çap ve çevre de bu nicelikleri belirtmek için kullanılır.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Heraclealı Bryson, muhtemelen Sokrates'in öğrencisi olan ve daireyi kareleştirme ve π'yi hesaplama problemini çözmeye katkıda bulunan eski bir Antik Yunan matematikçi ve sofist. Byrson, çemberin alanını hesaplama problemiyle ve Aristoteles'in kendisi hakkında yaptığı eleştirilerle tanınır.

Zenodorus çevresi sabit olan bir şeklin alanını ve sabit yüzeyli katı bir cismin hacmini inceleyen eski bir Yunan matematikçi.

<span class="mw-page-title-main">Hipokrat ayı</span>

Geometride adını Sakız Adalı Hipokrat'tan sonra alan Hipokrat ayı, iki çemberden oluşan yaylarla sınırlanmış bir aydır, daha küçük olanın çapı, daha büyük çember üzerinde dik bir açıyı kapsayan bir kirişe sahiptir.

<span class="mw-page-title-main">Çift merkezli çokgen</span>

Geometride, çift merkezli (bicentric) çokgen, teğet bir çokgendir ve aynı zamanda döngüsel yani kirişler dörtgenidir - yani, çokgenin her köşesinden geçen bir çevrel çember içine çizilmiştir. Tüm üçgenler ve tüm düzgün çokgenler çift merkezlidir. Öte yandan, kenarları eşit olmayan bir dikdörtgen çift merkezli değildir, çünkü hiçbir çember dört kenara da teğet olamaz.

Dışbükey bir kirişler çokgeni, herhangi bir şekilde üçgenlere ayrıldığında ve bu şekilde oluşturulan her üçgene bir iç teğet çember çizildiğinde Japon teoremi, bu üçgenlerin iç teğet çemberlerinin yarıçapları toplamının, seçilen üçgenlemeden bağımsız bir şekilde sabit olduğunu belirtir. Bu teorem, Carnot teoremi kullanılarak kanıtlanabilir. Japon matematikçilerin eski bir geleneğine göre, bu teorem 1800'de tanrıları ve yazarı onurlandırmak için bir Japon tapınağına asılan tabletlere yazılmış bir Sangaku problemiydi.

<span class="mw-page-title-main">Reuleaux üçgeni</span>

Bir Reuleaux üçgeni, merkezi diğer ikisinin sınırında bulunan üç çembersel diskin kesişmesinden oluşan bir şekildir. Sınırı, dairenin kendisinden başka en basit ve en iyi bilinen bu eğri, bir sabit genişlikli eğridir. Sabit genişlik, her iki paralel destek doğrusunun aralığının yönlerinden bağımsız olarak aynı olduğu anlamına gelir. Tüm çapları aynı olduğu için Reuleaux üçgeni, "Daire dışında, delikten düşmemesi için bir rögar kapağı hangi şekillerde yapılabilir?" sorusunun cevabıdır.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.