İçeriğe atla

Kemiosmoz

Kemiosmoz; iyonların, elektrokimyasal gradyanı azaltmak için seçici geçirgen bir zardan geçme hareketidir. Hücresel solunumdaki ATP sentezinin gerçekleşmesini sağlayan enerjinin büyük bir kısmı hidrojenlerin yaptığı bu hareketten karşılanır.

İyonlar şekildeki gibi bir kanaldan (kırmızı ile gösterilmiştir) geçirildiğinde, sahip oldukları potansiyel enerji, kimyasal reaksiyonları gerçekleştirmek için kullanılabilir.

Hidrojen iyonları (protonlar) proton konsantrasyonun yüksek olduğu yerden düşük olduğu yere doğru difüzyon hareketi yaparlar. Peter Mitchell, protonların zarın tarafları arasında oluşturduğu elektrokimyasal konsantrasyon gradyanından ATP üretiminde yararlanılıyor olabileceğini ileri sürdü. Mitchell, bu teoriyi osmozdan (suyun difüzyonu) yola çıkarak ortaya attığı için bu olay kemiosmoz olarak bilinir.

ATP-sentaz kemiosmoz aracılığıyla ATP sentezleyen enzimdir. ATP-sentaz protonların zardan geçmelerine imkân vererek; protonların sahip oldukları kinetik enerjiyi, ATP fosforilasyonu yapmak için kullanır. Bu mekanizmayla ATP üretimi kloroplast ve mitokondrinin yanı sıra bazı bakteri türlerinde de görülür.

Kemiozmotik Teori

Peter D. Mitchell 1961 yılında kemiozmotik hipotezi ortaya atmıştır.[1] Teorinin temelinde; hücresel solunumla elde edilen ATP'nin büyük bir kısmının; glikoz gibi enerji bakımından zengin moleküllerin yıkılmasıyla elde edilen NADH ve FADH2'nin enerjisiyle mitokondrinin iç zarlarında oluşturulan elektrokimyasal gradyan sayesinde üretildiği fikri yatar.

Mitokondride kemiosmoz.

Glikoz gibi moleküller, asetil-KoA gibi enerji bakımından yarı zengin moleküllere dönüştürülmek üzere metabolize edilir. Asetil Co-A'nın mitokondriyel matriksteki oksidasyonu ile NAD ve FAD gibi taşıyıcı moleküllerin indirgenmesi (elektron alması) birlikte gerçekleşir.[2] Taşıyıcı moleküller aldıkları bu elektronları mitokondrinin iç zarındaki ETS elemanlarına ulaştırırlar. ETS elemanları elektronlardan sağladıkları enerji ile protonları zarlar arası boşluğa pompalar ve zarlar arası hidrojen derişimi farkı (elektrokimyasal gradyan) artar. Zarlar arası boşlukta biriken protonlar kristanın iç tarafına doğru geçerken ATP-sentazı kullanırlar. Protonların matrikse doğru geri akarken ATP-sentazı kullanması, ATP-sentaza ADP'ye inorganik fosfat ekleyerek ATP üretmesi yani fosforilasyon yapması için gereken enerjiyi sağlar. Son olarak, bu olayda kullanılan protonlar (hidrojen iyonları) ve elektronlar oksijen tarafından tutulur ve su oluşur.

Kemiosmoz; kloroplastlar,[3] bakteriler[4] ve arkelerde gerçekleşen ATP üretiminde de önemli bir role sahiptir.

Proton-hareket gücü

Mitokondriyel iç zardaki enerji dönüşümü ve solunum zincirindeki redoks tepkimelerinin kimyasal enerjisi ile ATP-sentaz katalizörlüğünde oksidatif fosforilasyon arasındaki kemiosmotik bağlanma.[5] (bazen "mitokondriyel mantarlar" olarak adlandırılırlar).

İyonların zarlar arası hareketi iki faktörün bileşimine bağlıdır:

  1. Gradyana bağlı difüzyon kuvveti - iyon içeren tüm parçacıklar yüksek konstrasyonlu bölgeden düşük konsantrasyonlu bölgeye doğru difüzyona uğrama eğilimindedir.
  2. Elektriksel potansiyel gradyanına bağlı elektrostatik kuvvet - H+ gibi katyonlar elektriksel potansiyellerini azaltmak üzere difüzyona uğrama eğilimindedirler, anyonlar ise tam tersini tercih ederler.

Bu iki gradyan, elektrokimyasal gradyan olarak -bir arada- ifade edilebilir.

Biyolojik zarların çift katlı lipit katmanları iyonlar için -her nasılsa- bir bariyer gibi davranır. Böylece, enerji zarın iki tarafındaki iki gradyanın bileşimi olarak depolanır. Sadece bazı özel zar proteinleri (iyon kanalları gibi) iyonların zarın öbür tarafına geçmesine imkân tanır. Kemiozmotik teoride ATP-sentaz (bir transmembran protein) çok önemli bir role sahiptir. Bu protein; protonların, kendisi (ATP-sentaz) üzerinden yaptıkları doğal akışın enerjisini ATP'nin bağ enerjisine dönüştürür.

Bundan dolayı araştırmacılar -daha önce belirtildiği üzere elektrokimyasal gradyandan elde edilen- proton-hareket gücü (PMF) terimini oluşturdular. Bu terim, zarın tarafları arasındaki proton ve gerilim gradyanının (proton konsantrasyonu ve elektriksel potansiyel farkı) kombinasyonu olarak saklanan potansiyel enerjinin ölçüsü olarak tanımlanabilir. Elektriksel gradyan, zarın iki tarafındaki yük farklılığının bir sonucudur (H+ iyonu yani proton yanında Cl- gibi bir kontriyon olmadan hareket ettiğinde oluşur).

Çoğu zaman; proton-hareket gücü, bir proton pompası gibi davranan elektron taşıma sisteminin elektron taşıyıcı moleküllerdeki elektronların enerjisini (redoks tepkimelerinin Gibbs serbest enerjisi) kullanarak protonları (hidrojen iyonlarını) zarın öbür tarafına pompalaması ve zarın iki tarafı arasında fark oluşturması sonucu oluşturulur. Mitokondride, elektron taşıma sistemi tarafından serbest bırakılan enerji, protonları mitokondriyel matriksten mitokondrinin zarlar arası boşluğuna taşımak için kullanılır. Protonların mitokondrinin dışına doğru hareketi, içeriye doğru -pozitif yüklü- protonların konstrasyonunun azalmasını, bunun sonucunda zarın iç tarafında zayıf bir negatif yük oluşmasını sağlar. Elektriksel potansiyel gradyanı -170 mV civarlarındadır. Bu gradyanlar - yük farklılığının ve proton konsantrasyonu farklılığının ikisi de zarın iki tarafı arasında genellikle proton-hareket gücü olarak ifade edilen kombine bir elektrokimyasal gradyan oluşturur. Mitokondride, PMF'in neredeyse tamamı elektriksel bileşenden elde edilir ama kloroplastlarda PMF çoğunlukla pH gradyanından elde edilir çünkü H+ protonları Cl- ve diğer anyonların hareketi ile nötralize edilmiştir. Her iki durumda da, ATP-sentazın ATP sentezi yapabilmesi için PMF'in 50kJ/mol civarında olması gerekir.

Denklemler

Proton-hareket gücü Gibbs serbest enerjisinden elde edilir:

ΔG 1 mol Xm+ katyonunun A fazından B'ye transferi sırasında meydana gelen Gibbs serbest enerjisi değişimi, Δψ P ve N (A ve B) fazları arasındaki elektriksek potansiyel farklılığı (mV), [Xm+]A ve [Xm+]B zarın karşılıkları taraflarının katyon konsantrasyonları, F Faraday sabiti, R gaz sabitidir. Gibbs serbest enerjisi değişimi burada sık sık elektrokimyasal iyon gradyanı Δμm+ olarak da ifade edilebilir.

Bu durumda elektrokimyasal proton gradyanı denklemi şu şekilde sadeleştirilebilir:

burada

(P fazında pH - N fazında pH)

Mitchell proton-hareket gücünü (PMF) şöyle tanımladı:

ΔμH+ = 1 kJ·mol Δp = 10.4 mV'a karşılık gelir. 25 °C (298K°)'ye göre denklem düzenlenince şu formu alır:

Kemiosmotik fosforilasyona dair bir diyagram

Buradaki en önemli şey, enerjinin Gibbs serbest enerjisi olarak ifade edilmesidir, elektrokimyasal proton gradyanı ya da proton-hareket gücü (PMF) zarın karşılıklı tarafları arasındaki iki gradyanın kombinasyonudur:

  • ΔpH olarak ifade edilen konsantrasyon gradyanı
  • Elektriksel gradyan Δψ

Bir sistem ΔG dengesine (Δμm+, Δp) = 0 ulaştığında; bu zarın iki tarafında da konsantrasyonun aynı olduğu anlamına gelmez. Çünkü konsantrasyon farklılığına ek olarak iyonların elektriksel gradyanı da zarın karşı tarafına iyonların doğal akışını etkiler.

Örnek değerler:

ZarΔψ
(mV)
ΔpHΔp
(mV)
ΔGp
(kJ·mol−1)
H+ / ATP
mitokondriyel, iç zar (karaciğer)170≤0.5≤20066≥3.4
kloroplast, tilakoit03.3195603.1
E. coli hücreleri, pH 7.5140≤0.5≤17040

ΔGp ATP sentezinin Gibbs serbest enerjisi:

ADP + Pi → ATP

fosforilasyon potansiyeli olarak da bilinir. Yukarıdaki tablodaki H+ / ATP oranı değerleri Δp ve ΔGp'nin mukayesesiyle hesaplanabilir, örnek olarak:

H+ / ATP = 66 kJ·mol−1 / (200 mV / 10.4 kJ·mol−1/mV) = 66 / 19.2 = 3.4 (mitokondri)

E.coli için H+ / ATP oranını saptamak zordur (≠ olarak işaretlendi).

Gördüğümüz gibi, 1 ATP'nin kimyasal enerjisine dönüştürülecek enerji 3 H+'nın enerjisinin üstündedir.

Mitokondride

Mitokondri, kloroplast ve gram negatif bakterilerde kemiosmotik proton transferinin yönleri (hücresel solunum ve fotosentez). Bakteriyel hücre duvarının varlığı ihmal edilirse, gram pozitif bakterilerin dış zarı yoktur.[6]

Glikozun, oksijen varlığında tam yıkımı hücresel solunum olarak adlandırılır. Bu işlemin son aşamaları mitokondride gerçekleşir. İndirgenmiş NADH ve FADH2 molekülleri krebs döngüsü ve glikolizde üretilir. Bu moleküller elektronları -açığa çıkan enerjiyi mitokondriyel iç zarın tarafları arasında proton gradyanı oluşturmak için kullanan- bir elektron taşıma zincirine taşırlar. Sonradan ATP-sentaz saklı olan bu enerjiyi ATP yapmak için kullanır. Bu işlem; son elektron alıcısı oksijen olduğu ve oksijenin indirgenmesiyle su oluşturulurken açığa çıkan enerjiden ADP fosforilasyonu ile ATP sentezlendiği için, oksidatif fosforilasyon olarak adlandırılır.

Bitkilerde

Fotosentezin ışığa bağımlı tepkimelerinde kemiosmoz ile enerji üretilir. Işık enerjisi (fotonlar) Fotosistem 2'nin anten kompleksi tarafından tutulur ve bir çift elektron daha yüksek enerji seviyesine uyarılır. Bu elektronlar H+ iyonlarının zarın öbür tarafındaki inter-tilakoit boşluğa doğru yayılmasını sağlamak için elektron taşıma zincirinde iletilir. Bu H+ iyonları; ADP fosforilasyonu ile ATP üreten, ATP-sentaz olarak bilinen bir enzim aracılığı ile konsantrasyon gradyanının azaldığı yere doğru taşınırlar. İlk ışık tepkimesinden elektronlar Fotosistem 1'e ulaşırlar ve sonra daha yüksek bir enerji seviyesine çıkarlar, ardından bir elektron alıcı tarafından tutulur ve NADP+'yı NADPH+H'a indirgerler. Suyun parçalanması (fotoliz olarak bilinir) ile elde edilen elektronlar Fotosistem 2'nin uyarılan elektronlarının yerini alır. 4 elektron kazanmak için 2 su molekülü parçalanmalıdır.

Prokaryotlarda

Halofilik bakterideki fotosentez esnasında; güneş enerjisi, bacteriorhodopsin ve fosforilasyon (kimyasal enerji) arasındaki kemiosmotik bağlanma. Görsel hücre duvarı yok sayılarak hazırlanmıştır.

Bakteri ve arkeler de ATP üretmek için kemiosmozu kullanabilir. Siyanobakteri, yeşil sülfür bakterisi ve mor bakteri fotofosforilasyon adıyla bilinen bir işlem ile enerji üretir. Bu bakteriler fotosentetik elektron taşıma zinciri aracılığıyla bir proton gradyanı oluşturmak için ışık enerjisini kullanırlar. Fotosentetik olmayan bakteriler de -E. coli gibi- ATP-sentaz içerir.

Aslında mitokondri ve kloroplastın, ilkel ökaryotik hücrelerin kemiosmoz ile enerji transferi yapabilen bakteriyi yutmasıyla oluştuğuna inanılır. Bu endosimbiyoz kuramı olarak adlandırılır.

Kemiosmotik fosforilasyon ADP ve inorganik fosfattan ATP üretmenin üçüncü yoludur. Oksidatif fosforilasyonun bir parçasıdır.

Ayrıca bakınız

Kaynakça

  1. ^ Peter Mitchell (1961). "Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism". Nature (İngilizce). 191 (4784). ss. 144-148. Bibcode:1961Natur.191..144M. doi:10.1038/191144a0. PMID 13771349. 
  2. ^ Alberts, Bruce (2002). "Proton Gradients Produce Most of the Cell's ATP". Molecular Biology of the Cell (İngilizce). Garland. ISBN 0-8153-4072-9. 
  3. ^ Cooper, Geoffrey M. (2000). "Figure 10.22: Electron transport and ATP synthesis during photosynthesis". The Cell: A Molecular Approach (İngilizce) (2. bas.). Sinauer Associates, Inc. ISBN 0-87893-119-8. 
  4. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). "Figure 14-32: The importance of H+-driven transport in bacteria". Molecular Biology of the Cell (İngilizce). Garland. ISBN 0-8153-4072-9. 
  5. ^ Stryer, Lubert (1995). Biochemistry (dördüncü bas.). New York - Basingstoke: W. H. Freeman and Company. ISBN 978-0716720096. 
  6. ^ Bioenergetics 2 (2.2yazarlar=Nicholls D. G., Ferguson S, J. bas.). San Diego: Academic Press. 1992. ISBN 9780125181242. 

Konuyla ilgili yayınlar

  • NCBI kitaplığından biyokimya ders kitabıJeremy M. Berg, John L. Tymoczko, Lubert Stryer ((Ed.)). "18.4. A Proton Gradient Powers the Synthesis of ATP". Biochemistry (5th edition) (İngilizce). W. H. Freeman. 24 Eylül 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 24 Ocak 2013. 
  • technical reference relating one set of experiments aiming to test some tenets of the chemiosmotic theory - Seiji Ogawa and Tso Ming Lee (1984). "The Relation between the Internal Phosphorylation Potential and the Proton Motive Force in Mitochondria during ATP Synthesis and Hydrolysis". Journal of Biological Chemistry. 259 (16). ss. 10004-10011. PMID 6469951. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Proton</span> artı yüke sahip atom altı parçacık

Proton, atom çekirdeğinde bulunan artı yüklü atomaltı parçacıktır. Elektronlardan farklı olarak atomun ağırlığında hesaba katılacak düzeyde kütleye sahiptirler. Şimdiye kadar Protonların İki yukarı bir aşağı kuarktan oluştuğu kabul edilse de yeni yapılan bilimsel çalışmalarda araştırmacılar protonun kütlesinin yüzde 9'unun kuarkların ağırlığından, yüzde 32'sinin protonun içindeki kuarkların hızlı hareketlerinin meydana getirdiği enerjiden, yüzde 36'sının protonun kütlesiz parçacıkları olan ve kuarkları bir arada tutmaya yardımcı olan gluonların enerjilerinden, geriye kalan yüzde 23'lük bölümünse kuarkların ve gluonların protonun içinde karmaşık şekillerde etkileşimlerde bulunduklarında meydana gelen kuantum etkimelerden oluştuğunu buldular. Evrendeki bütün protonlar 1,6 x 10−19 değerinde pozitif yüke sahiptirler. Bu, atomlardaki çeşitli protonların birbirlerini itmelerini sağlar. Ama aradaki çekim, itmeden 100 kez daha güçlü olduğu için protonlar birbirlerinden ayrılmazlar. Protonun kütlesi elektronunkinden 1836 kat fazladır. Buna karşın, bilinmeyen bir nedenden ötürü elektronun yükü protonunkiyle aynıdır: 1,6 x 10−19 C. Atom içinde her biri (+1) pozitif elektrik yükü taşıyan taneciğe proton denir. Bu yüke yük birimi denir. Protonun yüklü elektronun yüküne eşit fakat ters işaretlidir.Bir protonun yoğunluğu yaklaşık olarak 4 x 1017 Kg/m³ 'tür. (2,5 x 1016 Lb/Ft3)

<span class="mw-page-title-main">Adenozin trifosfat</span> organik bileşi

'Adenozin trifosfat, hücre içinde bulunan çok işlevli bir nükleotittir. İngilizce Adenosine Triphosphateden ATP olarak kısaltılır. En önemli işlevi hücre içi biyokimyasal reaksiyonlar için gereken kimyasal enerjiyi taşımaktır. Fotosentez ve hücre solunumu sırasında oluşur. ATP bunun yanı sıra RNA sentezinde gereken dört monomerden biridir. Ayrıca ATP, hücre içi sinyal iletiminde protein kinaz reaksiyonu için gereken fosfatın kaynağıdır. 3 tane fosfattan oluşur.

<span class="mw-page-title-main">İyon</span> toplam elektron sayısının toplam proton sayısına eşit olmadığı, atoma net pozitif veya negatif elektrik yükü veren atom veya molekül

İyon ya da yerdeş, bir veya daha çok elektron kazanmış ya da yitirmiş bir atomdan oluşmuş elektrik yüklü parçacıktır. Atomlar kararsız yapılarından kurtulmak ve kararlı hale gelebilmek için elektron alırlar ya da kaybederler. Bunun için de başka bir atomla ya da kökle bağ kurarlar.

Oksidatif fosforilasyon, canlılarda enerji kaynağı olarak kullanılan ATP sentezinde kullanılan yollardan biridir. Fosforilasyon olarak da adlandırılan ATP sentezi başlıca dört yoldan gerçekleştirilir.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

Elektrokimya, kimya biliminin bir alt dalı olup elektronik bir iletken ile iyonik bir iletken (elektrolit) arayüzeyinde gerçekleşen reaksiyonları inceler. Elektrokimyada amaç kimyasal enerji ve elektrik enerjisi arasındaki değişimi incelemektir.

<span class="mw-page-title-main">Oksijenli solunum</span> Hücresel solunum

Oksijenli solunum, organik besinlerden oksijen yoluyla ATP elde etme işidir. Hücrelerdeki bazı kimyasal tepkimelerde kullanılan enerjinin oksijen kullanılarak açığa çıkarılması demektir. Biyoloji ders kitapları sık sık hücresel solunum sırasında glikoz molekülü başına 38 ATP molekülü üretildiğini söylese de sızıntılı zarların yanı sıra mitokondriyal matrikse pirüvat ve ADP hareketinin maliyetinden dolayı %100 verim olamayacağından bu sayıya asla ulaşılmaz, mevcut tahminler glikoz başına 29 ilâ 30 ATP dolayındadır.

<span class="mw-page-title-main">Aktif taşıma</span>

Aktif taşıma, küçük moleküllerin, az yoğun ortamdan çok yoğun ortama ATP harcanarak geçişidir. Aktif taşımada, hücre zarı üzerindeki porlardan geçebilecek büyüklükteki moleküller, taşıyıcı protein ve taşıyıcı enzimler yardımıyla taşınır. Taşıma sırasında enerji kullanıldığı için sadece canlı hücrelerde gerçekleşebilir. Hücre içinden hücre dışına, hücre dışından hücre içine olmak üzere her iki yönde de gerçekleşebilir.

<span class="mw-page-title-main">Nikotinamid adenin dinükleotit</span> İndirgenen ve oksitlenen kimyasal bileşik

Nikotinamid adenin dinükleotid (NAD+) hücrelerde bulunan önemli bir koenzimdir. Elektron taşıyarak indirgenme potansiyelinin moleküller arasında aktarılmasında rol oynar.

Elektron taşıma sistemi veya elektron taşıma zinciri (İngilizce: Electron Transport System), NADH ve FADH2 gibi elektron taşıyıcılarının verdikleri elektronları ETS elemanlarında redoks tepkimelerine sokarak ATP üretimini sağlayan sistemin adıdır.Kristada bulunur.Kıvrımlı olan zar yüzeyinin genişlemesini saglar.Böylece enzimlerin etkinliklerinin artmasına olanak sağlar.Elektronlar, son elektron alıcısı oksijene varana kadar ETS elemanları boyunca taşınırlar ve enerji kaybederler. Elektronların verdiği enerji ETS elemanları tarafından protonların aktif taşınmasında kullanılır ve ETS elemanlarının üzerinde bulunduğu çift katlı fosfolipid zarının iki tarafında potansiyel fark oluşturulur. Bu potansiyel fark daha sonra ATP sentezi için kullanılır. Burada ATP sentezi H+ iyonlarının derişim farklılığına bağlı olarak dışarı pompalanır. Bu sırada ATP sentez enzimi aktifleşir ve ATP sentezlenir. ETS elemanları, ökaryotik hücrelerde mitokondri ve kloroplast organellerinde bulunur.

<span class="mw-page-title-main">Moleküler motor</span>

Moleküler motorlar canlı organizmalarda hareketi sağlayan biyolojik moleküler makinalardır. Genel olarak, bir motor enerji kullanıp onu hareket veya mekanik işe dönüştürür. Örneğin, çoğu protein-temelli moleküler motor ATP'nin hizdrolizi ile açığa çıkan serbet enerjisini kullanıp onu mekanik işe dönüştürür. Enerjetik verimlilik açısından bu tür motorlar hâlen mevcut insan yapımı motorlardan üstündürler. Moleküler motorlarla makroskopik motorlar arasındaki önemli bir fark, moleküler motorların termal banyo içinde çalışmalarıdır, bu ortamda termal gürültüden kaynaklanan fluktuasyonlar önemli düzeydedir.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Kimyada kimyasal enerji, pil, ampul ve hücre gibi bir kimyasal maddenin tepkime esnasındaki değişiminin potansiyelidir. Kimyasal bağ kurma veya koparma sonucu enerji açığa çıkar. Bu enerji bir kimyasal sistem tarafından ya emilir ya da yayılır.

<span class="mw-page-title-main">Hidrojen siyanür</span>

Hidrojen siyanür, HCN formüllü inorganik bir bileşiktir. Endüstriyel ölçekte üretilen HCN, polimerlerden ilaçlara kadar birçok kimyasal bileşik için oldukça değerli bir öncüdür. Büyük ölçekli uygulamalar, sırasıyla madencilik ve plastikte kullanılan potasyum siyanür ve adiponitril üretimi içindir. Hidrojen siyanür, 25 °C'de kaynayan renksiz acıbadem kokusunda bir sıvıdır. Uçucu bir sıvı olduğundan, katı siyanür bileşiklerinden daha zehirlidir.

<span class="mw-page-title-main">Korona deşarjı</span>

Korona deşarjı; yüksek gerilimli bir iletkenin, etrafını saran hava gibi akışkanların iyonlaşmasıyla oluşan elektriksel bir deşarjdır. Havanın elektriksel bir kırılım geçirip iletkenleşmesi ve yükün iletkenden akışkana sızmasını sağlar. Korona deşarjı, iletkenin etrafındaki elektrik alanın, havanın dielektrik dayanımını aştığı yerlerde oluşur. Genellikle nemli ve sisli havalarda görülen bu deşarj işlemi radyal olarak dışarıya mor renkli ışık halkaları emite eder. Kendiliğinden meydana gelen korona deşarjı doğal olarak eğer elektrik alanı şiddetinin limiti sonsuza gitmiyorsa yüksek voltajlı sistemlerde açığa çıkar. Genellikle yüksek voltaj taşıyan iletkenlerin havaya bitişik sivri noktalarında, mavimsi bir parıltı olarak görülür ve bir gaz deşarj lambasıyla aynı özellikte ışık yayar.

<span class="mw-page-title-main">2,4-Dinitrofenol</span>

2,4-dinitrofenol (2,4-DNP ya da sadece DNP), HOC6H3(NO2)2 formülüne sahip bir organik bileşik. Tatlı kokulu, sarı, kristalimsi bir katıdır. Süblime olan DNP, çoğu organik çözücünün yanı sıra sulu alkalin çözeltilerde de çözünür. Kuru hâldeyken yüksek derecede patlayıcıdır ve ani patlama tehlikesi vardır. Diğer kimyasalların öncülü olarak kullanılabilen madde, mitokondrili hücrelerde adenozin trifosfat (ATP) üretimini inhibe etmesi ile biyokimyasal olarak aktiflik gösterir. Diyet ilacı olarak yüksek dozlarda kullanıldığı takdirde, bir dizi ölüm de dâhil olmak üzere ciddi yan etkiler kaydedilmiştir.

<span class="mw-page-title-main">Fotosistem II</span>

Fotosistem II, oksijenli fotosentezin ışığa bağlı reaksiyonlarındaki ilk protein kompleksidir. Bitkilerin, alglerin ve siyanobakterilerin tilakoid zarında bulunur. Fotosistem içinde, enzimler elektronlara enerji vermek için ışığın fotonlarını yakalar. Daha sonra bu elektronlar plastokinonu plastokuinole indirgemek için çeşitli koenzimler ve kofaktörler aracılığıyla fotosistem II tarafından kullanılır. Enerji verilen elektronlar, hidrojen iyonları ve moleküler oksijen oluşturmak için suyu oksitleyerek değiştirilir.

Fotoheterotroflar heterotrofik fototroflardır - yani ışığı enerji için kullanan, ancak karbondioksiti tek karbon kaynağı olarak kullanamayan organizmalardır. Sonuç olarak, karbon gereksinimlerini karşılamak için çevreden organik bileşikler alırlar; bu bileşikler arasında karbonhidratlar, yağ asitleri ve alkoller bulunur. Fotoheterotrofik organizmaların örnekleri arasında mor kükürt ve yeşil kükürt olmayan bakteriler ve heliobakteriler bulunur. Yakın zamanda yapılan araştırmalar, Doğu Eşekarısı ve bazı yaprak bitlerinin enerji kaynaklarını desteklemek için ışığı kullanabilecekleri belirtilmiştir.

Bir retinalofototrof, iki farklı fotoototrof türünden biridir, bir fototrof alt sınıfıdır ve hücre uyarımlaması ve ışığı enerjiye dönüştürmek için kullandıkları ağtabaka(retina) bağlayıcı proteinler olarak adlandırılır. Tüm fotoototroflar gibi, retinalofototroflar da hücresel süreçlerini başlatmak için fotonları emer. Ancak, tüm fotoototrofların aksine, retinalofototroflar, kimyasal tepkimelerini güçlendirmek için klorofil veya bir elektron taşıma zinciri kullanmazlar. Bu, retinalofototrofların, inorganik karbonu organik bileşiklere dönüştüren temel bir fotosentetik süreç olan geleneksel karbon fiksasyonundan yoksun oldukları anlamına gelir. Bu nedenle uzmanlar, bunların fotoototrofik benzeri olan klorofototroflardan daha az verimli olduğunu düşünüyor.

Elektrokimyada Nernst denklemi, bir elektrokimyasal reaksiyonun indirgenme potansiyelini ; indirgeme ve oksidasyona uğrayan kimyasal türlerin standart elektrot potansiyeli, sıcaklığı ve aktiflikleri ile ilişkilendiren bir denklemdir. Denklemi formüle eden Alman fiziksel kimyacı Walther Nernst'in adını almıştır.