İçeriğe atla

Kelebek önsavı

Zassenhaus Hasse diagramı "kelebek" önsavı - daha küçük altgrupları diyagramın üst kısmına doğrudur

Matematikte, Kelebek önsavı veya Zassenhaus önsavı, Hans Zassenhaus adına ithaf edilir, bir grubunun altgrupların kafesinin veya bir modülün altmodullerin kafesinin veya daha genel herhangi moduler kafes için teknik bir sonuçtur.[1]

Önsav: Varsayım bir grup ile operatorlerinin ve ve altgruplarıdır. Varsayım

ve

kararlı altgruplarıdır. Öyleyse,

ifadesi ya eşyapıdır

Schreier arıtma teoremi'nin verilen sorunsuz kanıtını Zassenhaus önsavının özelliği sağlar. İlgili çeşitli grupların çizilen Hasse diagramına çalışırken 'kelebek' belirginleşir.

Notlar

  1. ^ See Pierce, p. 27, exercise 1.

Kaynakça

  • Pierce, R. S. (1982), Associative algebras, Springer, s. 27, ISBN 0-387-90693-2 .
  • Goodearl, K. R.; Warfield, Robert B. (1989), An introduction to noncommutative noetherian rings, Cambridge University Press, ss. 51, 62, ISBN 978-0-521-36925-1 .
  • Lang, Serge, Algebra, Graduate Texts in Mathematics (Revised 3. bas.), Springer-Verlag, ss. 20-21, ISBN 978-0-387-95385-4 .
  • Carl Clifton Faith, Nguyen Viet Dung, Barbara Osofsky (2009) Rings, Modules and Representations. p. 6. AMS Bookstore, ISBN 0-8218-4370-2
  • Hans Zassenhaus (1934) "Zum Satz von Jordan-Hölder-Schreier", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 10:106–8.
  • Hans Zassenhaus (1958) Theory of Groups, second English edition, Lemma on Four Elements, p 74, Chelsea Publishing.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

Fonksiyon, matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Fonksiyon, 17. yüzyılda matematiğin kavramlarından biri olmuştur. Fizik, mühendislik, mimarlık ve birçok alanda kullanılmaktadır. Galile, Kepler ve Newton hareketlerin araştırılmasında, zaman ve mesafe arasındaki durumu incelemek için fonksiyonlardan faydalanmıştır. Dört işlemden sonra gelen bir işlem türüdür.

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Grup, soyut cebirin en temel matematiksel yapısıdır. Grup, ayrıca bir ikili işlemin tanımlı olduğu bir kümedir. Bir grubun grup olabilmesi için aynı zamanda bu işlemin birleşmeli, birim elemanlı ve ters elemanlı olması gerekir. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

<span class="mw-page-title-main">Messier 83</span>

Messier 83, Suyılanı takımyıldızı bölgesinde yaklaşık 15 milyon ışık yılı uzaklıkta bulunan bir ara sarmal gökada. Gökyüzünde çubuklu sarmal gökadalar içerisinde en yakın ve en parlak olanıdır, bir dürbün ile kolayca gözlenebilir.

<span class="mw-page-title-main">Schwarz önsavı</span>

Matematiğin bir alt dalı olan karmaşık analizde Schwarz önsavı, karmaşık düzlemdeki birim daire üzerinde tanımlı ve değer kümesi yine aynı birim daire olan holomorf fonksiyonların aldığı değerlerin üzerine kestirimler veren önemli bir sonuçtur. Her ne kadar bilim dizininde önsav olarak isim almışsa da kendi başına önemli bir teoremdir. Bu sonuç, günümüzde herhangi bir karmaşık analiz kitabında ifade edilen şeklinden daha farklı bir şekilde ilk defa Alman matematikçi Hermann Amandus Schwarz tarafından kendi doktora tezinde ifade edilmiştir. Sonucu günışığına çıkarıp günümüzdeki ifadesini yazan ve aynı zamanda bu önsavın tanınmasını sağlayan matematikçi ise Yunan matematikçi Constantin Carathéodory olmuştur.

Hiperbolik düzlemin dönüşüm grubu, genel Möbius grubunun alt grubu olup ile gösterilir. Üst yarı düzlemi koruyan bu grup Riemann küresi üzerinde tanımlıdır. nin etkisi altında hiperbolik doğrular yine hiperbolik doğrulara giderken, herhangi iki eğri arasındaki açının mutlak değerinin, hiperbolik uzunluk ve uzaklığın korunması grubun karakteristik özelliklerinden bazılarıdır. Bu özelliklerden önemli bir sonuca, hiperbolik düzlemin dönüşüm grubuyla hiperbolik yarı düzlemin izometri grubunun eşyapılı olduğuna, varmak mümkündür.

<span class="mw-page-title-main">Michaelis-Menten kinetiği</span> enzim kinetiğinin en basit ve en iyi modellerinden biri

Biyokimyada Michaelis–Menten kinetiği, enzim kinetiğinin en basit ve en iyi modellerinden biridir. Alman biyokimyacı Leonor Michaelis ve Kanadalı hekim Maud Menten'e atfen adlandırılmıştır. Bu model, enzim reaksiyon hızını betimleyen bir denklem şeklindedir, reaksiyon hızı , bir substrat S'nin konsantrasyonu cinsinden ifade edilir:

Kütleçekimi alanı, ağırlıklı bir kütlenin başka ağırlıklı bir kütle üzerinde oluşturduğu kuvveti açıklamak için kullanılan bir modeldir. Yerçekim alanı, yer çekim mucizesini açıklamak için kullanılır. Birimi newton bölü kilogram (N/kg) ’dır. Orijinal kavramında, yerçekimi noktasal iki ağırlık arasındaki kuvvettir. Newton’u takip ederek Laplace yerçekimi modelini bir çeşit radyasyon alanı olarak tanımladı ve yerçekimi için 19. yüzyılda yapılan açıklamalarda, bir noktasal çekimden çok alan modeli olduğu düşünülmüştür. Bir alan modelinde, iki parçacığın birbirini çekmesinden çok, bu parçacıklar ağırlıklarını yer ve zaman kavramı olarak bozmuştur ve kuvvet olarak ölçülen ve algılanan bu bozulmadır. Yerçekimi kuvveti yoktur veya bu yerçekimi bir uydurma bir kuvvettir.

<span class="mw-page-title-main">Temsil teorisi</span>

Temsil teorisi soyut cebirdeki cebirsel yapıları, daha somut olan matematiksel nesnelerin dönüşümleri olarak tasvir etmeye çalışan bir matematik dalıdır. Örneğin soyut bir grubunu bir vektör uzayı 'nin eşyapı dönüşüm grubunun() içinde görmeye çalışır. Böyle temsillere doğrusal temsil denir, çünkü bu temsil aslında grubundan genel lineer grup 'ye bir morfizma yazmak demektir. Böyle bir temsil bulmaktaki amaç, grubunu çalışmak için lineer cebir kullanmaktır. Soyut gruplardaki çarpma işlemi, özellikle bir bilgisayar için matris çarpmasından daha zordur. Soyut bir grubun doğrusal temsillerini kullanarak, gruptaki kimi hesaplamaları bilgisayara yaptırmak daha kolay olur.

<span class="mw-page-title-main">Peroksit</span>

Peroksitler, R−O−O−R yapısına sahip bir grup bileşiktir. Bir peroksit içindeki O−O fonksiyonel grubu, peroksit grubu veya perokso grubu olarak adlandırılır. Oksit iyonlarının aksine, peroksit iyonundaki oksijen atomları -1 yükseltgenme seviyesine sahiptir.

<span class="mw-page-title-main">Hjelmslev teoremi</span>

Geometride, Danimarkalı matematikçi Johannes Hjelmslev'in adını taşıyan Hjelmslev teoremi, bir doğru üzerindeki , , noktaları, aynı çizgideki başka bir doğrunun , , noktalarına izometrik olarak eşlenirse düzlem, daha sonra , , doğru parçalarının orta noktaları da bir doğru üzerindedir.

<span class="mw-page-title-main">Taban (lineer cebir)</span> Bir vektör uzayını tanımlamak için yeterli vektör kümesi

Lineer cebirde, taban, bir vektör uzayını tanımlamak için yeterli vektör kümesidir. Bir V vektör uzayının alt kümesi B bu uzayın tabanıysa, V'nin tüm elemanları B'nin elemanlarının biricik sonlu doğrusal birleşimleri şeklinde yazılabilir. Bu doğrusal birleşimlerin katsayıları, vektörün B üzerindeki bileşenleri ya da koordinatları olarak adlandırılır. Taban B'nin elemanlarına taban vektörleri denir.

<span class="mw-page-title-main">Ortak olasılık dağılımı</span>

Ortak olasılık dağılımı ya da birleşik olasılık dağılımı, sayıları birden fazla olan rassal değişkenlerinin birlikte gerçekleşmelerinin olasılık dağılımıdır.

<span class="mw-page-title-main">Carmichael sayıları</span>

Sayılar teorisinde bir Carmichael sayısı, modüler aritmetikte tüm tam sayıları için kongrüans uyumunu sağlayan bileşik bir sayısıdır: