İçeriğe atla

Kayıt rüzgâr profili

Atmos sınır katmanı

Kayıt rüzgâr profilindeki yarı deneysel ilişki, toprağın üzerinden atfosfer yüzey katmanına kadar olan yatay rüzgâr hızlarının düşey dağılımını tanımlamak için kullanılır. İlişki, gezegensel sınır katmanı literatüründe iyi açıklanır.

Rüzgâr hızlarının logaritmik profili genellikle en az 100 metre ile sınırlıdır. Serbest atmosferde,, jeostrofik rüzgâr ilişkileri kullanılabilir. Toprağın (metre) yukarısındaki rüzgâr hızını () hesaplamak için denklem:

Burada , sürtünme (veya kırpma) hızı (m s−1); , von Karman sabiti (~0.41); , sıfır yüzeyi yer değişimi; , (metredeki) yüzey pürüzlüğü ve , kararlılık terimi, , Monin-Obukhov kararlılık değişkeni. bağımsız kararlılık şartları altında, ve göz ardı edilir.

Sıfır yüzeyi yer değişimi (), ağaçlar ve yapılar gibi engellerdeki akışın sonucu olarak kaydedilen sıfır rüzgâr hızının toprağın yukarısındaki yüksekliğidir. Genellikle engellerin ortalama yüksekliğinin 2/3'ü olarak kabul edilir. Örneğin, eğer ormanda h = 30 m. yükseklikte kabul edilen rüzgârlarda sıfır yüzey yer değişimi d = 20 m olur.

Pürüz uzunluğu (), rüzgâr akışındaki yüzeyin pürüzlülüğünün etkisini hesaplayan düzeltme ölçümüdür ve yerdeki elemanların pürüzlülüğünün ortalama yüksekliği 1/10 ile 1/30 arasındadır. Pürüzsüz, açık denizde, beklenen değer 0,0002 m iken düzlükte, açık merada ≈ 0.03 m, ekim alanında ≈ 0.1-0.25 m ve ormanda ≈ 0.5-1.0 m (1 m üzerindeki değerler çok nadirdir ve aşırı pürüzlü arazileri belirtir).

Kayıt rüzgâr profili genellikle, rüzgâr profili güç kanunundan daha sağlam değerlendirici olması için dikkate alınır. Bağımsız şartların varsayıldığı ve pürüzlülük bilgisinin bulunmadığı durumlarda yaygın olarak kullanılır.

Uygulamalar

Kayıt rüzgâr profilleri, çoğu ated and used in many atmosferik kirlilik dağılımı modellerinde üretilir ve kullanılır.

Ayrıca bakınız

  • FluxNet
  • Atmosferik dağılım modelleri listesi

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Tünel etkisi</span>

Serbest veya bağlı bir parçacığa enerjisinden büyük bir potansiyel engelinin uygulanması sonra engelin kaldırılması durumunda parçacığın sızabilme, diğer bir deyişle engelin içinden geçebilme olayıdır. Makro düzeyde bahsedilecek olunursa insanın duvarın içinden geçebilmesi durumu olarak tasvir edilebilir. Serbest parçacık için problemi tek boyutta ele alırsak, parçacığa etki eden potansiyel matematiksel olarak:

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Koaksiyel kablo</span> televizyon ve uydu iletişim sistemlerinde kullanılan kablo türü

Koaksiyel kablo radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Trigama fonksiyonu</span> Poligama fonksiyonu

Matematik'te, trigama fonksiyonu, ψ1(z), olarak gösterilen ikincil poligama fonksiyonu'dur ve tanımı

.

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Rüzgâr profili güç kanunu</span>

Rüzgâr profili güç kanunu, bir yükseklikteki rüzgâr hızları ile diğerleri arasındaki ilişkidir.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

<span class="mw-page-title-main">Doğrusal olmayan Schrödinger denklemi</span> denklem

Doğrusal olmayan Schrödinger denklemi veya nonlineer Schrödinger denklemi (NLSE), Schrödinger denkleminin doğrusal olmayan bir versiyonudur. Denklem ağırlıklı olarak doğrusal olmayan optik fiberlerde ve düzlemsel dalga kılavuzlarında ışığın iletimini modellemek için kullanılır. Diğer kullanım alanları arasında Bose-Einstein yoğunlaşmaları, akışkanlar mekaniğindeki yüzey dalgaları, sıcak plazmalardaki Langmuir dalgaları ve solitonlar bulunmaktadır. Denklem, lineer versiyonunun aksine bir kuantum durumunun değişimini betimlemez.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.