İçeriğe atla

Katodik-ark biriktirme

Ark-PVD kaplama işleminde makropartikül ve yüzey morfolojisinin oluşumunu gösteren şematik çizim.

Katodik-ark biriktirme. Bu yöntemde buharlaştırılacak malzeme (katot) ve vakum çemberinin duvarları arasında düşük voltaj (20-300 V)- yüksek akım (100 A-200 A) özelliğine sahip potansiyel uygulanır. Başlangıçta, tetikleme ile kısa devre yapılarak, anot ile katot arasında akım geçişi oluşturulur. Katot yüzeyindeki çok küçük alanlarda sıcaklığı 2500 °C civarında olan ark izi oluşturulur. Bununla beraber, katotun önünde oluşturulan yüksek elektron akışı ile buharlaşan atomların iyonizasyonu sağlanmaktadır. Buharlaştırma işlemi sırasında, kaplama malzemesinin (katot) iyi soğutulmadığı durumlarda, film kalitesini bozan ve droplet adı verilen büyük sıvı kütlelerinin yüzeyden kopması söz konusudur.

Katodik ark yöntemi ile, metalik, seramik veya kompozit filmler oluşturulabilir. Katodik arkla oluşturulan, ark izinin boyutu birkaç mikrometre boyutlarındadır. Bu bölgedeki sıcaklık 15000 C gibi aşırı yüksek değerlere ulaşabilir. Katot üzerinden inanılmaz bir hızla, buharlaştırma yapılabilir (10 km/s) ve ark izinin bulunduğu yerde daha sonra bir krater meydana gelir.

Arkı, yüzey üzerinde hareket ettirmek için, elektromanyetik alandan yararlanılır. Eğer ark buharlaştırma prosesi sırasında katot spotu, buharlaştırma noktasında çok uzun süre kalırsa, makropartiküllerin veya dropletların oluşmasına sebep olunur. Böyle bir durumda, kaplamanın istenilen özellikleri kaybolur. Eğer silindirik katot kullanılırsa, işlem sırasında katodunda pozisyonu değiştirilebilir.

Katodik ark yönteminin ilk endüstriyel uygulaması, 1960'lı yıllarda Sovyetlerde gerçekleştirilmiştir. L.P. Sabrev'in yaptığı birçok tasarım ancak 1980'lerden sonra batı dünyasına taşınabilmiştir. Sovyetler örneğin, ark buhar biriktirme yöntemi ile TiN kaplama yaparak altın görünümü elde edebilmeyi başarmıştır.

Katodik ark yöntemi, kesici takımların üstüne aşırı sert film kaplamalar yapılmasında, günümüzde yaygın olarak kullanılmaktadır. Karbon kaplayıcı olarak kullanılırsa yüzeyde elmasvari karbon filmler oluşturulabilir. Bu teknoloji ile TiN, TiAlN, CrN, ZrN ve TiAlSiN gibi nanokompozit kaplamalar yapılabilmektedir.

Katodik ark yöntemi ile yapılan kaplamaların yüzeylerinde, droplet oluşumunu azaltmak için katotların arkasına kuvvetli mıknatıslar yerleştirilmektedir. Katotların arkalarına yerleştirilen mıknatısların, dropletların azalmasına olan etkisi şu şekilde açıklanabilir. Mıknatısların oluşturduğu manyetik alan, iyon gibi yüklü partiküllerin üzerinde etkili olurken, yüksüz makropartiküller üzerinde etkisi yoktur. Bu farklılık ile manyetik alan sistemde iyonlar ile makropartiküller arasında filtre görevi görür. Manyetik alanın iyonlar üzerindeki etkisi, iyonların hızını artırır ve bununla orantılı olarak film biriktirme hızlarıda artarak, kaplama süresi kısalır. Sonuç olarak kısalan kaplama süresi ile film yüzeyine düşen makropartikül sayısıda azalacaktır. Sistem içindeki makropartiküller, nötral bir buhar kaynağı olarak da tanımlanabilir. Plazma içerisinde bulunan makropartiküllerden, bu partiküllere çarpan elektronlar vasıtasıylada buharlaşma meydana gelebilmektedir. Oluşturulan manyetik alan, plazma içerisindeki elektron yoğunluğunu artırarak makropartiküllerin buharlaşmasını artırmaktadır.

Daha fazla bilgi için:

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Mıknatıs</span> manyetik alan üreten nesne veya malzeme

Mıknatıs ya da demirkapan, manyetik alan üreten nesne veya malzemedir. Demir, nikel, kobalt gibi bazı metalleri çeker, bakır ve alüminyum gibi bazı metallere ve metal olmayan malzemelere etki etmez.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Kutup ışıkları</span>

Kutup ışıkları ya da kutup aurorası, Kuzey ve Güney kutup bölgelerinde gökyüzünde görülen, yeryüzünün manyetik alanı ile Güneş'ten gelen yüklü parçacıkların etkileşimi sonucu ortaya çıkan doğal ışımalardır. Kuzey enlemlerde bu etki aurora borealis veya kuzey ışıkları olarak adlandırılır. Güney enlemlerindeki aurora australis oluşumu da benzer özelliklere sahiptir; ancak Antarktika'da, Güney Amerika'da ve Avustralya'da daha yüksek enlemlerden görülebilir.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

Mikroelektro-mekanik sistemler (MEMS) günümüzde var olan mekanik ve elektrik sistemlerin entegre ve minyatürize versiyonları olup mikron boyutlarında olan bu sistemleri nanoelektromekanik sistemler (NEMS) vasıtası ile nanoteknoloji uygulamaları için de kullanmak da mümkündür. MEMS kavramı ilk olarak 1987 yılında bir mikrodinamik çalıştayı esnasında telaffuz edilmiştir. Fakat MEMS kavramının ortaya çıkması esas olarak entegre devre çalışmalarında yaşanan gelişmeler ışığında olmuştur. Bu gelişmeler içinde kalıba alma, kaplama teknolojileri, ıslak oyma metotları, kuru oyma metotlarında yaşanan gelişmeler mikro aygıt yapımını mümkün kılmıştır. Küçük aygıtların yapılması konusunda ortaya çıkan ilk fikir ünlü fizikçi Richard Feynman tarafından 1959 yılında yapılan "There's plenty of room at the bottom" isimli konuşmada ortaya atılmıştır. Mikro-elektromekanik sistemlerin boyutları 1 ile 100 mikrometre arasında değişim gösterir. Bu küçük boyutlarda standard fizik kuralları genellikle geçersizdir. MEMS yapılarında yüzey alanının hacime oranı oldukça yüksektir bu sebep ile yüzey etkileri hacim etkilerine baskın gelir. Mikro elektro-mekanik sistem yapıları üç bölümden oluşur. Bu bölümler mekanik bölüm, mekanik bölümü çalıştıran tahrik bölümü ve mekanik hareketin davranışını inceleyen algılama bölümü olarak özetlenebilir. MEMS tahrik mekanizmaları verilen tahrik tipine göre farklılık gösterir. MEMS yapıları termal, elektrostatik, manyetik, pnömatik ve optik olarak tahrik edilebilir. Algılama işlemi ise genellikle optik ve elektronik sinyaller vasıtası ile yapılır. MEMS, Makina-Malzeme-Elektronik başta olmak üzere, temelde tüm mühendislik dalları ve temel bilimlerle birlikte pek çok dalı kapsayan çalışmaların yapıldığı disiplinlerarası bir kavramdır.

<span class="mw-page-title-main">Fiziksel buhar biriktirme</span> Fizik terimi

Fiziksel buhar biriktirme.

<span class="mw-page-title-main">Termal buharlaştırma biriktirme</span>

PVD kaplama teknikleri arasında en basit olanıdır. Kaplanacak malzeme, herhangi bir şekilde ısı etkisi ile buharlaştırılır ve buharlaşan atomlar, substrat(kaplanan malzeme) üzerinde giderek yoğuşurlar. İşlem 10-5 – 10-6 ton basınçlı vakum ortamında yapılır. Kaplanan malzemeyi buharlaştırmak için çeşitli teknikler vardır bu teknikler; a) Buharlaştırılacak malzemenin, doğrudan konduğu potaya direnç olarak bağlanması, b) İndüksiyon ocağı ile ısıtma, c) Bir elektron tabancası ile elektron ışını bombardımanı, d) Elektrik arkı oluşturulması, e) Lazer ışını uygulanarak ısıtma ile, buharlaştırma işlemi yapılabilir. Bu tekniklerde, doğrudan direnç, indüksiyon, elektron tabancası ile ışın bombardımanı ve vakum ark en önemlileridir. Buharlaştırıcı potaları refrakter metallerden(Mo,W, Ta), oksitlerden(Al2O3,SiO2,M2O, ThO) veya grafitten yapılır. 1700 C’nin üzerindeki sıcaklıklarda, su soğutmalı bakır potalarda kullanılabilir.

<span class="mw-page-title-main">Saçtırma biriktirme</span>

İnce film kaplamalarda, buhar kaynağı olarak, genellikle saçtırma yöntemi kullanılmaktadır. Diğer yöntemlere göre birçok avantaj sunan bu yöntemde, katı malzeme pozitif iyonlarla bombardıman edilerek, atomlar yüzeyden kopartılır. Kaplanacak olan malzeme, hızlandırılmış iyonlar gibi enerjik parçacıklarla bombardıman edilirse, saçılan atomlar substrat (alttaş) yüzeyinde film tabakası oluştururlar.

<span class="mw-page-title-main">İyon kaplama</span>

İyon kaplama, vakum kaplama işlemlerinin bir versiyonudur. İyon kaplama, substrat yüzeyinin periyodik bombardımanı ile, atomik boyuttaki partiküllerin yüzeyde biriktirilmesi ile gerçekleştirilir. Vakum iyon kaplama, reaktif iyon kaplama, kimyasal iyon kaplama gibi çeşitli teknikleri bulunur.

Manyetik olarak desteklenmiş düşük voltajlı deşarj sistemi ile 250 eV-2000 eV arasındaki enerjilerde iyon koparılmasını sağlayarak vakum çemberi içinde hareket etmesini sağlar. Koparılmanın ardından iyonlar, vakum sisteminde, çok delikli, eleğe benzer bir ekran üzerinden substrat üzerinde etkili olurlar. Ticari olarak kullanılan iyon tabancası sistemleri, 2000 eV enerjide 1 mA/cm2 akım yoğunluğunda ve 10 inch çapında argon iyon demeti sağlayacak kapasitede sistemlerdir. İyon tabancası sisteminin en büyük avantajı, katmanlama parametrelerinden bağımsız olarak iyon bombardımanı parametrelerinin kontrol edilebilmesidir. Diğer bir iyon bombardımanı tekniği olan gaz deşarjlı saçtırma işlemleri için bu bir dezavantajdır.

Çok düşük basınçlarda gaz içeren vakum çemberinde, iki elektrot arasına dc voltajı uygulanırsa, aralarında küçük voltajda bir akım geçer ve çember üzerinde düzgün bir potansiyel oluşur. Voltaj arttıkça ışıldama deşarjı oluşur. Katot akım yoğunluğu, katot üzerinde sabit kalır ve katot bölgesi, saçılan malzemenin uyarılma spektrumundan dolayı katot malzemesinin karakteristiğini gösteren renkte hafif bir ışıldamaya sahip olur. Bu renk yüzeyin saçılarak temizlenmesiyle ortaya çıkan değişim ile gözlenebilir. Daha yüksek basınçlarda, katot bölgesinin tüm katodu kapattığı görülür. Bu normal bir ışıldama bölgesidir ve iyon kaplama, saçtırmanın yapıldığı bölgedir. 1000 dc voltajda kendi kendine devam eden dc diyot gaz deşarjını elde etmek için 10 µm Argon basıncı gerekir.

<span class="mw-page-title-main">Elektron demetiyle fiziksel buhar biriktirme</span>

Elektron demeti ile fiziksel buhar biriktirme işlemi, anottaki hedef malzemenin, çok yüksek vakum altında, tungsten bir flaman ile elektron bombardımanına tutulması ile gerçekleştirilir. Elektron demeti, hedefteki atomların yüzeyden koparak gaz fazına geçmesini sağlar. Buharlaştırılan bu atomlar, vakum çemberi içindeki her noktaya yapışarak ince bir film oluşmasını sağlarlar.

<span class="mw-page-title-main">Titanyum nitrür</span> güçlü ve aşınması zor bir şey bu yüzden çok üretilen bir şey ve azot bileşimidir

Titanyum nitrür, substratın yüzey özelliklerini iyileştirmek için genellikle titanyum alaşımları, çelik, karbür ve alüminyum bileşenler üzerinde fiziksel buhar biriktirme (PVD) kaplaması olarak kullanılan son derece sert bir seramik malzemedir.

Krom nitrür, CrN formülüne sahip krom ve azotun kimyasal bir bileşiğidir. Çok serttir ve korozyona karşı son derece dayanıklıdır. Azot atomlarının krom kafesteki oktahedral delikleri işgal ettiği bir interstisyel bileşiktir: bu nedenle, kesinlikle bir krom (III) bileşiği değildir ve nitrür iyonları (N3-) içermez. Krom ikinci bir interstisyel nitrür, dikrom nitrür, Cr2N oluşturur.

<span class="mw-page-title-main">TiAlN</span>

TiAlN filmler özellikle delme uygulamalarındaki kesme performansları sebebiyle tercih edilen kaplamalardır. TiAlN filmlerinin sertlikleri 2100-2300 HV civarındadır ancak delme uygulamalarında kullanılmalarının sebebi Al katkısıyla oksidasyon direncinin artırılmasıdır. TiN kaplamalar 550 C civarında okside olmaya başlarken, TiAlN kaplamalarda bu sıcaklık 800 C’dir. CrN kaplamalarında oksidasyon direnci, TiN kaplamalara göre daha yüksektir. Bunun nedeni koruyucu bir amorf olan Al2O3 filminin oluşmasıdır. Bu kaplamalar ile oluşan yapılar, hedef malzemesinin(katot) kompozisyonuna bağlı olarak değişmektedir.

<span class="mw-page-title-main">Kimyasal buhar biriktirme</span>

Kimyasal buhar biriktirme. Von Guerkie, sürtünme ile kıvılcım üreten kükürt topunu, eğlence amaçlı yapması bu prosesin başlangıcı sayılır. Birbirlerine sürterek kıvılcım çıkarmakta ve hidrojensülfat oluşturulmaktaydı. 1798'de Henry, hidrokarbon gazı içerisinde, kıvılcım yaratarak karbon biriktirme yapmayı başardı.

<span class="mw-page-title-main">Plastik film</span>

Plastik film ince bir sürekli polimerik malzemedir.

<span class="mw-page-title-main">Elektrokaplama</span>

Elektrokaplama katı bir alt tabaka üzerinde o metalin katyonlarının doğrudan bir elektrik akımı vasıtasıyla indirgenmesi yoluyla metal kaplama yapan işlemlerin genel adıdır. Kaplanacak kısım elektrolitik hücrenin katodu görevi görür; elektrolit, kaplanacak metal tuzunun çözeltisidir; ve anot genellikle ya o metalin külçesi veya bazı etkisiz iletken malzemelerdir. Akım harici bir güç kaynağı tarafından sağlanır.

<span class="mw-page-title-main">Endüstriyel süreç</span> Mal üretme süreci

Endüstriyel süreç, genellikle büyük ölçeklerde gerçekleştirilen, bir malın veya malların üretimini sağlamak için kimyasal, fiziksel, elektriksel veya mekanik adımlardan oluşan işlemlerdir. Endüstriyel süreçler, ağır sanayinin temel bileşenleridir.