İçeriğe atla

Kategori teorisi

Kategori teorisi ya da Ulam kuramı, matematiksel yapılar ve bunlar arasındaki ilişkilerle soyut olarak ilgilenen bir matematik kuramıdır. Kategori kuramı, öğelere (nesnelere) yoğunlaşan küme kuramının aksine, nesneler arası ilişkilere (morfizmlere) odaklanır.

Tarihi

Bir kategori birbirileriyle ilişkili matematiksel nesneler sınıfının (örneğin grupların) özünü yakalamaya çalışır. Geleneksel olarak yapıldığı gibi tekil nesneler (gruplar) üzerine yoğunlaşmak yerine, bu nesneler arasındaki yapı muhafaza edici gönderimler (yani morfizmler) üzerine yoğunlaşır. Gruplar örneğinde bu gönderimler grup homomorfizmleridir. Bu şekilde farklı kategorileri funktorlar aracılığıyla ilişkilendirmek mümkündür. Funktorlar, bir kategorinin her nesnesini diğer kategorinin bir nesnesiyle ve bir kategorideki morfizmi diğerindeki bir morfizme ilişkilendiren fonksiyonların bir genelleştirmesidir. Sıkça topolojik uzayın temel grubu gibi "doğal yapılar" funktorlar şeklinde ifade edilebilir. Bunun ötesinde, bu tip yapılar "doğal bir bağıntıya" sahiptir ve bir funktoru diğerine ilişkilendirme yolu olan doğal transformasyon konseptine olanak tanır.

Kategoriler, funktorlar ve doğal transformasyonlar Samuel Eilenberg ve Saunders MacLane tarafından 1945 yılında ortaya atılmıştır. Başlangıçta bu nosyonlar, topolojide, özellikle cebirsel topolojide, geometrik ve sezgisel bir kavram olan homolojiden aksiyomatik bir yaklaşım olan homoloji teorisine geçişte önemli bir bölümdür. Başkalarının yanı sıra Ulam tarafından (ya da kendisine atfen), benzer düşüncelerin 1930'ların sonunda Polonya okulunda ortaya çıktığı iddia edilmiştir.

Eilenberg/MacLane, kendi ifadelerine göre, bu kuramı geliştirirken doğal transformasyonları anlama çabasındaydılar. Bunu yapabilmek için funktorlar tanımlamak, funktorları tanımlamak için ise kategoriler tanımlamak gerekiyordu.

Günümüzde bu kuram, matematiğin tüm alanlarında uygulanmaktadır.

Kategoriler, nesneler ve morfizmler

Kategoriler

Bir kategori C aşağıdaki üç matematiksel durumu oluşturur:

  • Bir sınıf ob(C), böyle ögelere nesneler denir;
  • Bir sınıf hom(C), böyle ögelere biçimler veya göndermeler veya oklar denir. Her biçim f bir kaynak nesne a ve hedef nesne b var.
    f : ab ifadesi, sözlü olarak ifadesi "f a'dan b'ye bir biçimdir".
    hom(a, b) ifadesi — alternatif ifade olarak homC(a, b), mor(a, b) veya C(a, b)a dan bye tüm biçimlerin hom-sınıf ifadesidir.
  • Bir ikili işlem ∘, biçimlerin kompozisyonu denir, böylece a, b ve c herhangi üç nesne için, elimizde hom(b, c) × hom(a, b) → hom(a, c) var.f : ab nin kompozisyonu ve g : bc gf veya gf olarak yazılır,[1] aksiyom ile yönetilir:
    • Birleşimlilik: Eğer f : ab, g : bc ve h : cd ise h ∘ (gf) = (hg) ∘ f ve
    • Özdeşlik: x nesnesi için, burada bir morfizm 1x : xx var. x için özdeş morfizm denir, böylece her f : ab morfizm için, elimizde 1bf = f = f ∘ 1a var.
aksiyomlardan,buna burada her nesne için tam bir özdeş morfizm sağlanabilir. Bazı yazarlar sadece kendi özdeş morfizmalarını tanımlayarak verilen tanımından sapabilir.

Morfizmler

morfizmler boyunca ilişkiler (fg = h gibi) değişmeli diyagramlar ile "noktalar" (köşeler) gösterimsel nesneler ve "oklar" gösterimsel biçimler sık sık kullanılarak gösterilmiştir.

Morfizmler için aşağıdaki özelliklerin herhangisi olabilir. Bir morfizm f : ab bir:

  • monomorfizm (veya monik) eğer fg1 = fg2 vurgusu g1 = g2 tüm g1, g2 : xa morfizmler için.
  • epimorfizm (veya epik) eğer g1f = g2f vurgusu g1 = g2 tüm g1, g2 : bx morfizmler için.
  • bimorfizm eğer f hem epik ve hem de moniktir.
  • izomorfizm eğer burada bir morfizm g : ba var böylece fg = 1b ve gf = 1a.[2]
  • endomorfizm eğer a = b. ise end(a) anın endomorfizminin sınıfını ifade eder.
  • otomorfizm eğer f hem bir endomorfizm ve hem de bir izomorfizmdir. aut(a) anın otomorfizmlerinin sınıfını ifade eder.
  • çekilme eğer fnin bir sağ tersi var, yani eğer burada bir morfizm g : ba ile fg = 1b varsa.
  • kesit eğer f in bir sol tersi var, yani eğer burada bir morfizm g : ba ile gf = 1a varsa.

Her çekilme bir epimorfizmdir ve her kesit bir monomorfizmdir. Dahası, aşağıdaki üç durumun eşdeğeridir:

  • f bir monomorfizm ve bir çekilmedir;
  • f bir epimorfizm ve bir kesittir;
  • f bir izomorfizmdir.

Kaynakça

  • William Lawvere and Steve Schanuel: Conceptual Mathematics: A First Introduction to Categories, Cambridge University Press, Cambridge, 1997.
  • Saunders Mac Lane: Categories for the Working Mathematician, 2nd edition. Graduate Texts in Mathematics 5, Springer 1998
  • Francis Borceux: Handbook of Categorical Algebra, volumes 50-52 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994.

Dış bağlantılar

  • Alexandre Stefanov'un serbest çevrimiçi matematik kaynakları listesinin Kategori Teorisi bölümü.

Kaynakça

  1. ^ Some authors compose in the opposite order, writing fg yazılır veya gf için fg.Kategori teorisi kullanılarak bilgisayar bilimcileri çok sık yazmak f ; g gf için
  2. ^ Note that a morphism that is both epic and monic is not necessarily an isomorphism! An elementary counterexample: in the category consisting of two objects A ve B, özdeş biçimler ve from A dan Bye bir tek morfizm f, f is both epic and monic but is not bir isomorphism.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

Python, nesne yönelimli, yorumlamalı, birimsel (modüler) ve etkileşimli yüksek seviyeli bir programlama dilidir.

Matematiksel mantık, biçimsel mantığın matematiğe uygulanmasıyla ilgilenen bir matematik dalıdır. Metamatematik, matematiğin temelleri ve kuramsal bilgisayar bilimi alanlarıyla yakınlık gösterir. Matematiksel mantığın temel konuları biçimsel sistemlerin ifade gücünün ve biçimsel ispat sistemlerinin tümdengelim gücünün belirlenmesidir.

Fonksiyon, matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Fonksiyon, 17. yüzyılda matematiğin kavramlarından biri olmuştur. Fizik, mühendislik, mimarlık ve birçok alanda kullanılmaktadır. Galile, Kepler ve Newton hareketlerin araştırılmasında, zaman ve mesafe arasındaki durumu incelemek için fonksiyonlardan faydalanmıştır. Dört işlemden sonra gelen bir işlem türüdür.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Yıldız sınıflandırma (astronomi)</span>

Yıldız sınıflandırma, gökbilimde, yıldızların öncelikle sıcaklıklarına göre sınıflandırılıp, diğer nitelikleri ile bu sınıfların arıtılmasıdır. Yıldız sıcaklıkları Wien'in yer değiştirme yasasına göre sınıflandırılabilseler de, uzak yıldızlar ile sorunlar ortaya çıkmaktadır. Yıldız tayfölçümü ise soğurma çizgilerine dayalı bir sınıflandırma yöntemi sunmaktadır. 19. yüzyıla dayanan ve bugünkü yöntemlerin de temelini oluşturan bir sınıflandırma, yıldızları tayfölçüm sayesinde A'dan Q'ya kadar sıralamaktadır.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Malzeme</span> hepsi bazı benzer ya da bazılarının karışımı ile oluşan özelliklere sahip olan ve nesnelerin oluşturulabileceği farklı miktarlarda ortaya çıkabilen maddeler

Malzeme, kullanılabilir cisimler yapmak amacı ile doğal veya yapay olarak kullanılan her türlü maddelere "malzeme" denir.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

<span class="mw-page-title-main">Sonsuz</span> matematik ve fizikte herhangi bir sonu olmayan şeyler ve sayılar

Sonsuz, eski Yunanca Lemniscate kelimesinden gelmektedir, çoğunlukla matematik ve fizikte herhangi bir sonu olmayan şeyleri ve sayıları tarif etmekte kullanılan soyut bir kavramdır.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

<span class="mw-page-title-main">3C 83.1B</span>

NGC 1265, Kahraman takımyıldızı bölgesinde yaklaşık olarak 341,15 MIy (104,6 Mpc)uzaklıkta bulunan bir eliptik gökadadır. Guillaume Bigourdan tarafından 14 Kasım 1884 tarihinde keşfedildi. Kahraman kümesi üyesi olan NGC 1265, aynı zamanda Fanaroff–Riley tip I sınıfı radyo gökadadır.

Fonksiyonlar, sahip oldukları özelliklere göre sınıflandırılabilir.

Graham sayısı, adını Ronald Graham'dan alan, Ramsey teorisindeki problemlerin çözümü için üst sınır getiren büyük bir sayıdır.

<span class="mw-page-title-main">Hava sahası sınıfları</span>

Hava sahası sınıfları, hava sahalarının yoğunluk durumuna ve irtifalarına göre ayrıldığı kategorilerdir. Tüm hava sahaları belirli bir sınıfa dahildir ve bu sahada uçan hava taşıtları çeşitli kısıtlamalarla karşılaşabilirler. Hava sahaları ICAO'ya göre A, B, C, D, E, F ve G şeklinde yedi sınıfa ayrılır. Bunlardan A, B, C, D, E kontrollü, F ve G kontrolsüz hava sahasıdır. Sınıfların irtifa limitleri ülkeden ülkeye farklılıklar gösterir.

Eşyapı ya da izomorfizma (ya da izomorfi), aynı kategoride(grupta) olan benzer iki matematiksel obje arasında bir gönderim olup matematiksel vücut tersi yapıda da muhafaza edilir. Aralarında bu şekilde eşyapı bulunan objelere eşyapısal ya da izomorf(ik) objeler denir. Örneğin iki küme arasında eşyapı, birebir, örten bir gönderimdir. Kümelerin üzerinde elemanlara sahip olma haricinde bir oluşum olmadığından, eşyapı gönderiminin koruyacağı başka bir yapı yoktur. Soyut cebirde iki grup arasında bir eşyapı, birebir, örten bir gönderimdir; dahası, iki gruptaki işleme saygı gösterir, bu iki işlemin birbirleriyle etkileşim halinde olmasını sağlar.

Matematikte, özellikle kategori teorisi ve homotopi teorisinde bir grupoid için grup kavramı birden fazla eşdeğer yolla açıklanabilir. Bir grupoid şu iki şekilde genelleştirilir: