İçeriğe atla

Katabolizma

Proteinler, polisakkaritler ve yağların parçalanmasını gösteren bir çizim

Yadımlama veya katabolizma, enerjice zengin ve büyük moleküllü moleküllerin daha küçük moleküllere parçalanması olayı ve bu işlemler sürecidir. Yani metabolizmanın yıkım aşamaları olarak da genellenebilir. Katabolizma kapsamında besin maddeleri niteliğinde olan uzun moleküllerin hücre içinde enzimlerin katalizörlüğünde parçalanarak, molekül bağlarında depolanmış enerji açığa çıkarılıp kullanılır.

Katabolizma tepkimeleri sırasında ortaya çıkan enerjinin bir bölümü, hücrenin yaşamsal etkinliklerinde kullanılırken bir bölümü de ATP molekülünün fosfat bağlarında, daha sonra kullanılmak üzere depolanır. Fotosentez bu olay için örnek olarak gösterilebilir.

Aşamaları

Katabolizma süreçleriyle enerjinin açığa çıkması üç aşamada gerçekleşir:

  • Birinci aşamada polisakkaritler, yağlar ve proteinler parçalanır. Bu işlemde bir miktar ısı ortaya çıkacaktır.
  • İkinci aşamada bu ısının da katkısıyla ATP molekülleri sentezlenir.
  • Üçüncü aşama ise Krebs döngüsü adı verilen tepkimeler zinciriyle besin maddelerinin su ve karbondioksite kadar yıkımları sağlanır.

ATP eldesi

Besin maddeleri olarak tanımlanan, enerji içeren organik bileşiklerin hücre içinde yıkımıyla ATP sentezlenmesi süreçleri, iki kategoride incelenir. Bunlar;

  • Oksijenli (aerobik) ve
  • Oksijensiz (anaerobik) katabolizma süreçleridir.

Oksijensiz katabolizma

Oksijensiz katabolizma süreçlerinde besin maddelerinin oksijen kullanılmaksızın yıkımı sonucunda ATP sentezlenir. Ancak bu moleküllerin oksijen kullanılmadan yıkımı, karbondioksit ve suya kadar sürdürülemeyeceği için, moleküler bağlar arasındaki kimyasal enerjinin büyük bir bölümü, ATP sentezi için kullanılamaz.

Oksijensiz katabolizma, büyük oranda fermantasyon tepkimeleridir. Ancak hayvansal hücrelerde de belirli durumlarda oksijensiz katabolizma tepkimelerinden yararlanılır. Retina ve kıkırdak hücrelerinde esas olan oksijensiz tepkimeler iken, kas hücrelerinde, yeterli oksijen ulaşmadığında kullanılan tepkimelerdir. Öte yandan kısa bir süre içinde yüksek efor gerektiren hareketlerde –örneğin yüzme, kısa mesafe koşu gibi sportif etkinliklerde- oksijensiz katabolizma yoluyla enerji sağlamanın daha kısa sürede gerçekleşmesi nedeniyle bu tepkimeler devreye girecektir.

Oksijenli katabolizma

Oksijenli katabolizma süreçlerinde ise besin maddelerinin yıkımı, karbondioksit ve suya kadar sürdürülebilir ve içerdikleri tüm kimyasal enerji açığa çıkarılabilir. Ancak bu enerjinin sadece yarısı ATP sentezinde kullanılabilir, kalan yarısı ısı enerjisine dönüşür.

Hücre, katabolizma tepkimelerini ister oksijenli ister oksijensiz olarak yapsın, başlangıç reaksiyonları hücrenin sitoplazmasında gerçekleşir ve hep aynıdır. Bu reaksiyon dizisi glikozun pürivata kadar parçalandığı süreçtir ve glikoliz olarak adlandırılır.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Protein</span> polipeptitlerin işlevsellik kazanması sonucu oluşan canlıların temel yapı birimi

Proteinler, bir veya daha fazla uzun amino asit artık zincirini içeren büyük biyomoleküller ve makromolekül'lerdir. Proteinler organizmalar içinde, hücrelere yapı ve organizmalar sağlayarak ve molekülleri bir konumdan diğerine taşıyarak metabolik reaksiyonları katalizleme, DNA kopyalama, uyaranlara yanıt verme dahil olmak üzere çok çeşitli işlevler gerçekleştirir. Proteinler, genlerinin nükleotit dizisi tarafından dikte edilen ve genellikle faaliyetini belirleyen özel 3D yapıya protein katlanmasıyla sonuçlanan amino asit dizilimlerinde birbirlerinden farklıdır.

<span class="mw-page-title-main">Adenin</span>

Adenin, toplam iki tane olan pürin bazlarından biri olan moleküldür. DNA ve RNA nükleik asitlerinin nükleotidlerinde bulunur. Adenin, DNA'da timine, RNA'da ise urasile hidrojen bağlarıyla bağlanarak içinde bulunduğu nükleik asidin yapısını sabitleştirir.

<span class="mw-page-title-main">Fotosentez</span> bitki ve organizmalar tarafından ışık enerjisinin kimyasal enerjiye dönüştürülme işlemi

Fotosentez, bitkiler ve diğer canlılar tarafından, ışık enerjisini organizmaların yaşamsal eylemlerine enerji sağlamak için daha sonra serbest bırakılabilecek kimyasal enerjiye dönüştürmek için kullanılan bir işlemdir. Bu kimyasal enerji, karbondioksit ve sudan sentezlenen şekerler gibi karbonhidrat moleküllerinde depolanır.

<span class="mw-page-title-main">Metabolizma</span> "Meta" değişen, "bol" atma anlamındaki ön ek ve fiilinden oluşan kelimedir. Canlının/hücrenin çevresiyle uyumlu etkileşimini anlatır. Yapım ve yıkım faaliyetleri veya bütün canlılık belirtileri bu kavramın kendisi değil sonucudur.

Metabolizma (yapım-yıkım) veya istiklâp, canlıda yaşamın sürdürülmesi sırasında gerçekleşen tüm kimyasal tepkimelerdir. Canlı organizmada ya da canlı hücrede meydana gelen yapıcı ve yıkıcı nitelikteki kimyasal olayların tümünü içerir.

Hücre bir canlının yapısal ve işlevsel özellikler gösterebilen en küçük birimidir. Hücre kelimesi, ; Latince küçük odacık anlamına gelen "cellula" kelimesinden Robert Hooke tarafından türetilmiştir. Hücrenin içerisinde "Solunum, Boşaltım, Beslenme, Sindirim" gibi yaşamsal faaliyetler gerçekleşir.

Hidroliz işlemi suyu oluşturan hidrojen ve oksijen elementlerinin birbirinden ayrılması ile sonuçlanan bir işlemdir. Bazı kaynaklarda hidroliz, moleküllerin su ilavesiyle daha fazla sayıda parçacık oluşturması olarak da geçer. Hidroliz, su ile bir kimyasal bağın parçalanmasıdır yani bir kimyasal reaksiyondur. Hidroliz genel olarak suyun nükleofil olduğu ikame(yer değiştirme reaksiyonu), eliminasyon(organik reaksiyon türü) ve solvasyon (çözme) reaksiyonları için kullanılır.

<span class="mw-page-title-main">Difüzyon</span>

Difüzyon, maddelerin çok yoğun ortamdan, az yoğun ortama doğru kendiliğinden yayılmasıdır. Fiziksel kimyada ise moleküllerin kinetik enerjilerine bağlı olarak rastgele hareketlerine denir.

<span class="mw-page-title-main">Adenozin trifosfat</span> organik bileşi

'Adenozin trifosfat, hücre içinde bulunan çok işlevli bir nükleotittir. İngilizce Adenosine Triphosphateden ATP olarak kısaltılır. En önemli işlevi hücre içi biyokimyasal reaksiyonlar için gereken kimyasal enerjiyi taşımaktır. Fotosentez ve hücre solunumu sırasında oluşur. ATP bunun yanı sıra RNA sentezinde gereken dört monomerden biridir. Ayrıca ATP, hücre içi sinyal iletiminde protein kinaz reaksiyonu için gereken fosfatın kaynağıdır. 3 tane fosfattan oluşur.

<span class="mw-page-title-main">Kas sistemi</span>

Kas sistemi canlıya hareket yeteneği sağlayan sistemdir. Kas sistemi omurgalılarda sinir sisteminin kontrolü altında olmasına rağmen bazı kaslar tamamen otonom çalışabilir.

Oksidatif fosforilasyon, canlılarda enerji kaynağı olarak kullanılan ATP sentezinde kullanılan yollardan biridir. Fosforilasyon olarak da adlandırılan ATP sentezi başlıca dört yoldan gerçekleştirilir.

<span class="mw-page-title-main">Oksijenli solunum</span> Hücresel solunum

Oksijenli solunum, organik besinlerden oksijen yoluyla ATP elde etme işidir. Hücrelerdeki bazı kimyasal tepkimelerde kullanılan enerjinin oksijen kullanılarak açığa çıkarılması demektir. Biyoloji ders kitapları sık sık hücresel solunum sırasında glikoz molekülü başına 38 ATP molekülü üretildiğini söylese de sızıntılı zarların yanı sıra mitokondriyal matrikse pirüvat ve ADP hareketinin maliyetinden dolayı %100 verim olamayacağından bu sayıya asla ulaşılmaz, mevcut tahminler glikoz başına 29 ilâ 30 ATP dolayındadır.

<span class="mw-page-title-main">Etanol fermantasyonu</span> Yan ürün olarak etanol ve karbondioksit üreten biyolojik süreç

Etanol fermantasyonu, solunumda oksijen kullanmayan canlılar için bir fermantasyon biçimidir.

<span class="mw-page-title-main">Laktik asit fermantasyonu</span> Metabolik süreç

Laktik asit fermantasyonu, oksijen yetersizliğinde bazı bakteri ve hayvan hücrelerinde görülen bir fermantasyon biçimidir.

<span class="mw-page-title-main">Nikotinamid adenin dinükleotit</span> İndirgenen ve oksitlenen kimyasal bileşik

Nikotinamid adenin dinükleotid (NAD+) hücrelerde bulunan önemli bir koenzimdir. Elektron taşıyarak indirgenme potansiyelinin moleküller arasında aktarılmasında rol oynar.

<span class="mw-page-title-main">Krebs döngüsü</span> Hücrelerde enerji açığa çıkarmak için kimyasal reaksiyonlar

Krebs döngüsü, trikarboksilik asit döngüsü veya sitrik asit döngüsü, canlı hücrelerin besinleri yükseltgeyerek enerji elde etmesini sağlayan ve bütün yaşam biçimlerinde önemli bir yer tutan kimyasal süreçlerin son aşamasıdır. TCA devri olarak da bilinir. 1937'de Hans Adolf Krebs tarafından açıklığa kavuşturulan tepkimelerin hayvan, bitki, mikroorganizma ve mantar gibi birçok hücre türünde oluştuğu saptanmıştır.

<span class="mw-page-title-main">Işıklı devre reaksiyonları</span> Fotosentetik reaksiyonlar

Işıklı devre reaksiyonları, fotosentetik sistemlerde ışığa bağımlı olarak, güneş enerjisinin kimyasal enerjiye çevrildiği reaksiyonlardır. Bu reaksiyonların sonucunda oksijen, ADP ve NADP+ enerji taşıyıcıları ATP ve NADPH'a dönüştürülür. Fotoredüksiyon, Elizabeth Fulhame tarafından 18. yüzyılda keşfedilmiştir.

Elektron taşıma sistemi veya elektron taşıma zinciri (İngilizce: Electron Transport System), NADH ve FADH2 gibi elektron taşıyıcılarının verdikleri elektronları ETS elemanlarında redoks tepkimelerine sokarak ATP üretimini sağlayan sistemin adıdır.Kristada bulunur.Kıvrımlı olan zar yüzeyinin genişlemesini saglar.Böylece enzimlerin etkinliklerinin artmasına olanak sağlar.Elektronlar, son elektron alıcısı oksijene varana kadar ETS elemanları boyunca taşınırlar ve enerji kaybederler. Elektronların verdiği enerji ETS elemanları tarafından protonların aktif taşınmasında kullanılır ve ETS elemanlarının üzerinde bulunduğu çift katlı fosfolipid zarının iki tarafında potansiyel fark oluşturulur. Bu potansiyel fark daha sonra ATP sentezi için kullanılır. Burada ATP sentezi H+ iyonlarının derişim farklılığına bağlı olarak dışarı pompalanır. Bu sırada ATP sentez enzimi aktifleşir ve ATP sentezlenir. ETS elemanları, ökaryotik hücrelerde mitokondri ve kloroplast organellerinde bulunur.

<span class="mw-page-title-main">Radikal (kimya)</span>

Kimyada radikaller eşleşmemiş elektronu olan atom, molekül veya iyonlardır. Bu eşleşmemiş elektronlar genelde son derece reaktiftir. Radikaller, yanma, atmosfer kimyası, polimerleşme, plazma kimyası, biyokimya ve pek çok başka kimyasal süreçte önemli rol oynar. Örneğin, insan fizyolojisinde, süperoksit ve azot oksit, damar tonusu gibi pek çok biyolojik süreci düzenler. Radikal ve serbest radikal terimleri genelde eşanlamlı kullanılmakla beraber, bir radikal bir çözelti kafesi içinde hapsolmuş veya başka bir moleküle bağlanmış durumda olabilir. 1900'de Michigan Üniversitesi'nde Moses Gomberg tarafından betimlenen trifenilmetil radikali, ilk tespit edilmiş organik serbest radikal olmuştur.

<span class="mw-page-title-main">Hidrojen siyanür</span>

Hidrojen siyanür, HCN formüllü inorganik bir bileşiktir. Endüstriyel ölçekte üretilen HCN, polimerlerden ilaçlara kadar birçok kimyasal bileşik için oldukça değerli bir öncüdür. Büyük ölçekli uygulamalar, sırasıyla madencilik ve plastikte kullanılan potasyum siyanür ve adiponitril üretimi içindir. Hidrojen siyanür, 25 °C'de kaynayan renksiz acıbadem kokusunda bir sıvıdır. Uçucu bir sıvı olduğundan, katı siyanür bileşiklerinden daha zehirlidir.

Solunum sistemi, kan ile atmosfer havası arasında gaz değişimini sağlamaya hizmet eden bir sistemdir. En önemli görevi oksijen'in kana geçmesi ve kandaki karbondioksit'in dışarı atılmasıdır, bunun yanında başkaca işlevleri de vardır. Bu işlevler soluma ile gerçekleştirilir. Türlere göre değişen solunum organları vardır ve buna bağlı olarak sistem bazı türlerde farklılıklar gösterir
Solunum sistemi; dış solunum, iç solunum ve hücresel solunum olarak incelenir.