İçeriğe atla

Karp-Flatt ölçütü

Karp-Flatt ölçütü, koşut işlemcili sistemlerde kodun koşutlaştırılma derecesini gösteren bir ölçüdür. Amdahl yasası ve Gustafson yasası ile uyumlu olan ölçüt 1990 yılında Alan H. Karp ve Horace P. Flatt tarafından ortaya atılmıştır.

Tanımı

Hızlanma olgusunun gözlendiği işlemcili koşut bir hesaplamada deneysel yollarla elde edilen ardışık bölüm Karp-Flatt ölçütünü vermektedir.

=

'nin değeri küçüldükçe koşutlaştırma oranı artmaktadır.

Kanıtı

Bir koşut işlemci üzerinde çalışan koşut algoritmaların başarımı farklı yöntemlerle belirlenebilmektedir. Karp-Flatt ölçütü, diğer yöntemlerle ayırt edilemeyen başarım özelliklerinin açığa çıkmasını sağlamaktadır. Bu eşitlik, Amdahl yasasının aşağıdaki yazımından çıkarılabilmektedir.

= +

Burada;

  • , kodun işlemcili bir sistem üzerindeki çalışma süresini,
  • , kodun ardışık bölümünün çalışma süresini,
  • , kodun koşut bölümünün bir işlemci üzerindeki çalışma süresini,
  • , işlemci sayısını göstermektedir.

Ardışık bölüm = biçiminde tanımlandığında eşitlik

= +

olarak yazılabilecektir.

Bu eşitliğin hızlanma türünden ifadesi ise aşağıdaki gibi olacaktır.

= e +

Kullanımı

Bilgisayar bilimi metinlerinde sıkça yer alan Karp-Flatt ölçütü, kullanım sıklığı bakımından hızlanma ve verimliliğin çok gerisindedir. Karp ve Flatt'in bu ölçütü yayımlamalarının temel nedeni de bu olguya bağlanmaktadır. Amdahl yasasının göz önüne almadığı yük dengeleme sorunlarını ortaya koyan ölçüt, ardışık bölümü temel almakta ve bu, çok sayıda işlemcinin kullanıldığı sistemlerde belirgin başarım artışları sağlamaktadır.

Değişmez büyüklükteki bir sorunu çözmek amacıyla hazırlanan bir sistemin başarımı genellikle artan işlemci sayısıyla ters orantılıdır. Karp-Flatt ölçütü kullanılarak elde edilen ardışık bölüm, verimlilikteki düşüşün kısıtlı koşutlaştırma olanaklarından kaynaklanıp kaynaklanmadığını ortaya koyabilmektedir.

Kaynakça

  • Quinn Michael J, MPI ve OpenMP ile C'de Koşut Programlama McGraw-Hill Inc. 2004. ISBN 0-07-058201-7
  • Karp Alan H. ve Flatt Horace P. Koşut İşlemci Başarımının Ölçümü, Communication of the ACM Cilt: 33 Sayı: 5, Mayıs 1990

Dış bağlantılar

İlgili Araştırma Makaleleri

Adını İngiliz fizikçi Paul Dirac'tan alan spinli ve göreli kuantum mekaniği denklemi,

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Bilgisayar mimarı Gene Amdahl'ın ismini alan Amdahl Yasası, sistemin bir parçasının hızlandırılması sonucunda, sistemin bir bütün olarak ele alındığında toplam hızlanmasının ne olacağını hesaplamak için kullanılır. Sıklıkla, birden fazla işlemci kullanıldığında erişilebilecek azami hızlanmayı tahmin etmek için paralel hesaplamalarda da kullanılır.

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Gustafson yasası</span>

Gustafson yasası, yeterince büyük bir sorunun verimli bir biçimde koşutlaştırılabileceğini öngören bir bilgisayar mühendisliği yasasıdır. 1988 yılında John L. Gustafson'un geliştirdiği bu kural, bir programın koşutluk derecesine bağlı olarak ne ölçüde hızlandırılabileceğini belirleyen Amdahl yasası ile yakından ilintilidir.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

Matematik'te, çok değişkenli Gama fonksiyonu, Γp(·), Gama fonksiyonu'nun genelleştirilmiş şeklidir. Çokdeğişkenli istatistik'te kullanılır.

<span class="mw-page-title-main">Feynman diyagramı</span> parçacıklar bozunum geçirdiğinde veya diğer parçacıklarla etkileşime girdiğinde en temel düzeyde ne olduğunu gösteren uzay zaman şeması

Teorik fizikte Feynman diagramları, bir Feynman diyagramının davranışını düzenleyen matematiksel ifadelerin resimsel sunumlar katılarak diyagram tarafından açıklandığı gibi atomaltı parçacıklarların davranışları gösterilmiştir. Bu şemalar bunları bulan adınadır, Amerikan fizikçisi Richard Feynman Nobel Ödülü kazandı ve 1948 yılında tanıttı. Atomaltı parçacıkların ilişkileri sezgisel anlamak karışık ve zor olabilir ve Feynman diagramları oldukça gizemli soyut formülün basit bir gösterimine izin verir. David Kaiser yazdı ki, "yüzyılın ortasından bu yana, bu diagramlar teorik fizikçiler için giderek zorlaşan kritik hesaplamalar uygulamasına yardım araçlarıdır," ve "Feynman diagramları Teorik fizikte her yönüyle neredeyse devrimdir.". kuantum alan teorisi diyagramların ilk uygulamasıdır, ayrıca, katı-hal teorisi gibi diğer alanlardada kullanılabilir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.