İçeriğe atla

Karl Schwarzschild

Karl Schwarzschild
DoğumKarl Schwarzschild
9 Ekim 1873(1873-10-09)
Frankfurt, Alman İmparatorluğu
Ölüm11 Mayıs 1916 (42 yaşında)
Potsdam, Alman İmparatorluğu
MilliyetYahudi
Vatandaşlık Alman İmparatorluğu
EğitimLudwig Maximilian Üniversitesi
Kariyeri
DalıFizik
Astronomi
Doktora
danışmanı
Hugo von Seeliger
İmza

Karl Schwarzschild (Almanca: [ˈʃvaɐ̯tsʃɪlt]; 9 Ekim 1873 - 11 Mayıs 1916) Yahudi kökenli Alman fizikçi ve astrofizikçi. Aynı zamanda astrofizikçi Martin Schwarzschild'in babası.

Schwarzschild, Einstein'ın genel göreliliği teoremini tanıttığı aynı yıl, 1915'te tek bir eksende dönmeyen kütle için sınırlı bir durum olan Einstein'ın genel görelilik alan denklemlerine ilk kesin çözümü sağladı. Schwarzschild koordinatlarını ve metriğini içeren Schwarzschild çözümü, sabit bir kara deliğin olay ufkunun boyutu olan Schwarzschild yarıçapının türetilmesine yol açar.

Daha 16 yaşında yayımlandığı yörünge yazısı ile zekasını erken yaşta kanıtlayan Schwarzschild, doktora derecesini Poincare'nin kuramları üzerine olan çalışması ile edindi. I. Dünya Savaşı'nda Alman ordusuna katıldı ve 1915 yılında ve sonrasında görecelilik teoremi üzerine çalışmaya devam etti.

Schwarzschild 1. Dünya Savaşı'nda siperdeyken uzay-zamanın son derece idealize, kusursuz derecede küresel bir yıldızın etrafında nasıl büküldüğünü hesaplamanın yolunu buldu. Denklemlerini Einstein'a yolladı ve o da Ocak 1916'da bu denklemleri Berlin'deki bir konferansta sundu. Schwarzschild, 1. Dünya Savaşı sırasında Alman ordusunda hizmet ederken bunları başardı. Ertesi yıl Rus cephesinde kaptığı otoimmün hastalık pemfigusundan öldü. Hastalığın mekanizması özellikle Aşkenazi Yahudi kökenli insanları etkilerdi.

Kara delikler için Schwarzschild yarıçapı olarak bilinen bir değer geliştirmiştir. Buna göre güneş boyutunda bir yıldızın kara delik olabilmesi için yarıçapının 3 km civarında olacağını bulmuştur. Aynı şekilde dünya için bu değer 1 cm olacaktır[1]

İlk yılları

Karl Schwarzschild 9 Ekim 1873'te Frankfurt'ta Main'de Yahudi bir ailenin çocuğu olarak dünyaya geldi. Babası, şehrin işletme dünyasında aktifti ve ailenin şehirde 16. yüzyıla kadar uzanan ticaretçi ataları vardı.[2] Karl 11 yaşına kadar bir dindar eğitim veren Yahudi ilkokuluna gitti.[3] 16 yaşında yayımladığı yörüngeler (göksel mekanik) üzerine iki makalesi onun düşünce potansiyelini ve dahiliğini gösteriyordu.[4] Strazburg ve Münih'te okudu ve 1896'da Henri Poincaré'nin teorileri üzerine yaptığı çalışmalarından sonra doktorasını aldı.

Ayrıca bakınız

Kaynakça

  1. ^ [Ref. Kaku M., Parallel Worlds, 134p, eISBN 0-385-51416-6, 2005]
  2. ^ Sadri Hassani Mathematical Physics: A Modern Introduction to Its Foundations Retrieved 2012-05-27
  3. ^ MacTutor History of Mathematics"Biography". Retrieved 2012-05-27
  4. ^ Hertzsprung, Ejnar (1917). "Karl Schwarzschild". Astrophysical Journal. 45: 285. Bibcode:1917ApJ....45..285H. doi:10.1086/142329.

İlgili Araştırma Makaleleri

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Genel görelilik</span> kütle-zaman ilişkisini tanımlayan teori

Genel görelilik teorisi, 1915'te Albert Einstein tarafından yayımlanan, kütleçekimin geometrik teorisidir ve modern fizikte kütle çekiminin güncel açıklamasıdır. Genel görelilik, özel göreliliği ve Newton'un evrensel çekim yasasını genelleştirerek, yerçekimin uzay ve zamanın veya dört boyutlu uzayzamanın geometrik bir özelliği olarak birleşik bir tanımını sağlar. Özellikle uzayzaman eğriliğine maruz kalmış maddenin ve radyasyonun, enerjisi ve momentumuyla doğrudan ilişkilidir. Bu ilişki, kısmi bir diferansiyel denklemler sistemi olan Einstein alan denklemleriyle belirlenir.

<span class="mw-page-title-main">Kara delik</span> çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, genellikle yüksek kütleli gök cismi

Kara delik; astrofizikte, çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, büyük kütleli bir gök cismidir. Kara delik, uzayda belirli nitelikteki maddenin bir noktaya toplanması ile meydana gelen bir nesnedir de denilebilir. Bu tür nesneler ışık yaymadıklarından kara olarak nitelenirler. Kara deliklerin "tekillik"leri nedeniyle, üç boyutlu olmadıkları, sıfır hacimli oldukları kabul edilir. Kara deliklerin içinde ise zamanın yavaş aktığı veya akmadığı tahmin edilmektedir. Kara delikler Einstein'ın genel görelilik kuramıyla tanımlanmışlardır. Doğrudan gözlemlenememekle birlikte, çeşitli dalga boylarını kullanan dolaylı gözlem teknikleri sayesinde keşfedilmişlerdir. Bu teknikler aynı zamanda çevrelerinde sürüklenen oluşumların da incelenme olanağını sağlamıştır. Örneğin, bir kara deliğin potansiyel kuyusunun çok derin olması nedeniyle yakın çevresinde oluşacak yığılma diskinin üzerine düşen maddeler diskin çok yüksek sıcaklıklara erişmesine neden olacak, bu da diskin yayılan x-ışınları sayesinde saptanmasını sağlayacaktır. Günümüzde, kara deliklerin varlığı, ilgili bilimsel topluluğun hemen hemen tüm bireyleri tarafından onaylanarak kesinlik kazanmış durumdadır.

Solucan deliği, uzayzamandaki farklı noktaları birbirine bağlayan kurgusal bir yapıdır ve Einstein alan denklemlerinin özel bir çözümüne dayanır.

Einstein alan denklemleri ya da Einstein denklemleri, yüksek hız ve büyük kütlelerde geçerli olan uzayzamanın geometrisi ile enerji ve momentum dağılımını ilişkilendiren doğrusal olmayan diferansiyel denklemler kümesidir. Einstein, bu denklemleri ilk kez 1915 yılında yayımlamıştır.

<span class="mw-page-title-main">Görelilik ilkesi</span> Fizik yasalarının tüm referans çerçevelerinde aynı olması gerektiğini belirten fizik ilkesi

Görelik teorisi ya da basitçe fizikte görelilik genellikle Albert Einstein'ın iki teorisini kapsar. Bunlar özel görecelik ve genel göreceliktir.

<span class="mw-page-title-main">Beyaz delik</span> Kara deliklerin tersine hiçbir maddenin giremediği astronomik cisim

Beyaz delik ya da ak delik, kara deliğe düşen bir maddenin solucan delikleri aracılığıyla evrenin başka bir yerinde yeniden ortaya çıktığı noktalardır. Başka bir zamana veya başka bir Bebek Evren'e de açılabilirler. Kara delikler, içine düşen hiçbir şeyin kendisinden kaçamadığı cisimlerdir. Bunların tam tersi olan beyaz deliklere ise hiçbir madde giremez, yalnız kara deliğe düşen maddeler çıkabilir. Bu sebeple beyaz delik olarak adlandırılmışlardır. Bu konuda önemli çalışmalar yapmış olan teorik fizikçi Stephen Hawking, son makalesinde solucan deliklerinin ve beyaz deliklerin bulunmadığını savunmuştur. Genel görelilikte; beyaz delik, madde ve ışık kendisinden kaçabildiği halde dışarıdan girişe izin vermeyen uzayın varsayımsal bir bölgesidir. Bu anlamda, sadece dışarıdan giriş olabilen, madde ve ışığın kaçamadığı kara deliğin tersidir. Beyaz delikler, sonsuz kara delikler teorisiyle ortaya çıkar. Gelecekteki kara deliğe ek olarak, Einstein alan denkleminin bir çözümü geçmişinde bir beyaz deliğe sahiptir. Fakat, bu alan, yerçekimsel çöküş boyunca oluşturulan kara delikler için mevcut değil ve beyaz deliğin oluşmuş olabileceği bilinen bir fiziksel süreç de yok. Şimdiye kadar hiçbir beyaz delik gözlenmemiştir. Ayrıca, termodinamik yasaları der ki, evrenin net entropisi ya artar ya da sabittir. Bu kural beyaz deliklerin entropiyi düşürme eğilimleriyle ihlal edilir. Tıpkı kara delikler gibi, beyaz delikler de kütle, yük ve açısal momentum özelliklerine sahiptir ve diğer kütleler gibi maddeleri çekerler. Ama beyaz deliğe doğru düşen nesneler asla beyaz deliğin olay ufkuna tam olarak ulaşamazlar(Aşağıda tartışılan maksimum genişletilmiş Schwarzschild çözüm durumda bile, geçmişteki beyaz delik olay ufku, gelecekteki siyah delik olay ufku olur. Böylece, beyaz deliğe doğru düşen herhangi bir nesne, sonunda siyah delik ufkuna ulaşacaktır.) Yüzeyi olmayan, yerçekimsiz bir alan hayal edin. Bu durumda, yerçekimi ivmesi herhangi bir vücut yüzeyinde en fazladır. Ama kara deliklerin bir yüzeyi olmadığından, yerçekimi ivmesi katlanarak artar; fakat asla son değerine ulaşamaz çünkü tekillikte kabul edilen bir yüzel bulunmamaktadır. Kuantum mekaniklerinde, kara delik Hawking radyasyonu yayar ve böylece radyasyon gazıyla termal dengeye gelebilir. Stephen Hawking, termal dengedeki bir kara deliğin zaman tersinin yine termal dengedeki bir kara delik olduğunu savundu çünkü termal denge durumu, zaman- tersinir- değişmezdir. Bu da, beyaz deliklerle kara deliklerin aynı nesne olduğu anlamına gelebilir. Sonradan, sıradan bir kara delikten yayılan Hawking radyasyonu, beyaz delik ışıması olarak tanımlandı. Hawking'in yarı-klasik argümanı kuantum mekanik Ads/CFT benzeşmesinde yeniden oluşturuldu. Aynı zamanda Ads/CFT'de; zaman tersi kendisiyle aynı olan bir gauge teorisinde, anti-de Sitter'deki bir kara delik bir termal gazla açıklanır.

Fizik ve astronomi'de, Reissner–Nordström metriği Maxwell denklemlerini de içeren Einstein alan denklemlerinin statik çözümü olarak varsayımsal biçimde ortaya çıkmıştır. Kütlesi "M" olan, yüklü ama dönmeyen küresel yapıdaki yerçekimsel alana tekabül etmektedir.

Einstein'ın genel görelelik teorisine göre Schwarzschild metriği Einstein'ın alan denklemlerinin çözümüyle ortaya çıkmıştır. Küresel bir kütlenin dışındaki elektik yükü, angular momentumu ve evrensel kozmolojik sabiti sıfır varsayılan yerçekimsel alanı tarif eder. Bu çözüm yıldızlar veya gezegenler gibi düşük hızlarda dönen cisimler için oldukça yararlıdır. Dünya ve Güneş de bu cisimlere örnek olarak verilebilir. Bu çözüm ismini çözümünü 1916 yılında yayınlayan Karl Schwarzschild'den almıştır.

Kerr–Newman metriği genel relativitide yüklü, dönen kütlelerin çevresindeki uzay zaman geometrisini tarif eden Einstein–Maxwell denklemlerinin çözümüdür. Bu çözüm astrofizik alanındaki fenomenler için pek faydalı sayılmaz çünkü gözlemlenebilen astronomik objeler kayda değer net yük taşımazlar. Bu çözüm uygulama alanı yerine daha çok teorik fizik ve matematiksel ilginin bir sonucudur..

<span class="mw-page-title-main">Genel göreliliğe giriş</span>

Genel görelilik veya genel izafiyet, 1907 ve 1915 yılları arasında Albert Einstein tarafından geliştirilen bir çekim teorisidir. Genel göreliliğe göre, kütleler arasında gözlenen kütleçekim etkisi uzayzamanın eğrilmesinden kaynaklanır.

Mikro kara delikler, mekanik kuantum kara delikleri veya mini kara delikler olarak da adlandırılır, varsayımsal minik kara delikler, kuantum mekaniği etkileri için önemli bir rol oynar.

Delik iddiası, genel izafiyet kapsamında Einsten’ı, ünlü alan formülünü geliştirirken sekteye uğratan net bir ikilemdir.

Genel görelilik, Albert Einstein tarafından 1907-1915 yılları arasında geliştirilmiş ve 1915’ten sonra da genel göreliliğe pek çok kişi tarafından katkıda bulunulmuştur. Genel göreliliğe göre, kütleler arasında gözlemlenen kütlesel çekim kuvveti, bu kuvvetlerin uzay ve zamanı bükmesinden kaynaklanmaktaydı. 

Fizik'te, yerçekimi teorileri kütleli cisimlerin hareket mekanizmalarını kapsayan etkileşimleri esas alır. Antik zamanlardan bu yana birçok Yerçekimi teorisi ortaya atılmıştır.

On dokuzuncu yüzyıldan beri, bazı fizikçiler doğanın temel kuvvetlerini dikkate alan tek bir kuramsal çerçeve geliştirmeye çabaladılar: birleşik alan teorisi. Klasik birleşik alan teorileri, klasik fizik temelinde bir birleşik alan teorisi yaratmaya çalıştı. Bir kısım fizikçi ve matematikçi tarafından, Birinci ve İkinci Dünya Savaşları arasındaki yıllarda, özellikle yerçekimi ve elektromanyetizmin birleştirilmesi konusunun hararetle peşinden koşuldu. Bu çalışmalar, diferansiyel geometrinin saf bir matematiksel gelişim olarak ortaya çıkmasını teşvik etti. Albert Einstein klasik birleşik alan teorisini geliştirmeye çabalayan pek çok fizikçi arasında en tanınmışıdır.

<span class="mw-page-title-main">İkili kara delik</span>

İkili kara delik, iki kara deliğin birbirine yakın bir yörüngede bulunduğu sistemdir. Yıldızsal ikili kara delik sistemleri ve süper kütleli ikili kara delik sistemleri olarak iki alt grupta incelenebilir. Yıldızsal ikili kara delik sistemleri büyük kütleli çift yıldız sistemlerinin kalıntısıdır. Süper kütleli ikili kara delik sistemlerinin ise galaksilerin birleşmesi ile oluştuğu düşünülmektedir.

<span class="mw-page-title-main">Kütleçekimsel tekillik</span> koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum

Kütleçekimsel tekillik ya da uzay-zaman tekilliği koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum olarak tanımlanır. Bu nicelikler, maddenin yoğunluğunun da dahil olduğu uzay-zaman eğriliklerinin skaler değişmeyen nicelikleridir. Uzay zamanın normal kuralları tekillik içinde var olamaz.

<span class="mw-page-title-main">Görelilik teorisi</span> zamanın göreceli olduğunu söyleyen teori

Görelilik teorisi, Albert Einstein'ın çalışmaları sonucu önerilen ve yayınlanan, özel görelilik ve genel görelilik adlarında birbirleriyle ilişkili iki teorisini kapsar. Özel görelilik, yer çekiminin yokluğunda tüm fiziksel fenomenler için geçerlidir. Genel görelilik, yer çekimi yasasını ve bu yasanın diğer doğa kuvvetleri ile ilişkisini açıklar. Astronomi de dahil olmak üzere kozmolojik ve astrofiziksel alem için geçerlidir.

Fizikte, bir elektronun açısal momentumunun, kütlesinin ve yükünün değeri aynı olan bir karadelik olsaydı bu karadeliğin elektronun diğer özelliklerini de paylaşacağını bahseden spekülatif bir hipotez vardır. En önemlisi, Brandon Carter 1968'de böyle bir nesnenin manyetik momentinin bir elektronunkiyle eşleşeceğini gösterdi. Bu ilginç çünkü özel göreliliği göz ardı eden ve elektronu dönen küçük bir yük küresi olarak ele alan hesaplamalar, deneysel değerden kabaca iki kat daha küçük bir manyetik moment veriyor.