İçeriğe atla

Karanlık yıldız (Newton mekaniği)

Karanlık yıldız, devasa kütlesi nedeniyle ışık hızına eşit veya bu hızı aşan bir yüzey kaçış hızına sahip olan Newton mekaniğindeki teorik bir nesnedir. Newton mekaniği altında ışığın yerçekiminden etkilenip etkilenmediği belirsizdir, ancak Atkılarla aynı şekilde hızlandırılmış olsaydı, karanlık yıldızın yüzeyinden yayılan ışıklar yıldızın yerçekimi tarafından hapsolacak ve onu adından anlaşılabileceği gibi karanlık yapacaktır. Karanlık yıldızlar, genel görelilikteki kara deliklere benzerdir.

Karanlık yıldız teorisinin tarihi

John Michell ve karanlık yıldızlar

1783 yılında jeolog John Michell, Henry Cavendish'e karanlık yıldızların beklenen özelliklerini özetleyen ve The Royal Society tarafından 1784 cildinde yayınlanan bir mektup yazdı. Michell; bir yıldızın yüzeyindeki kaçış hızı ışık hızına eşit veya daha yüksek olduğunda, oluşan ışığın kütleçekimsel olarak hapsolacağını ve böylece yıldızın uzaktaki bir astronom tarafından görülemeyeceğini hesapladı.

Michell'in bu tür "görünmez" yıldızların sayısını hesaplama fikri 20. yüzyıl gök bilimcilerinin çalışmasını öngörüyordu: Çift yıldız sistemlerinin belirli bir oranının en az bir "karanlık" yıldız içermesi beklenebileceğinden, yapabildiğimiz kadar çift yıldız sistemleri belirleyip bunların arasından sadece bir görülebilir yıldızlı sistemleri tespit etmeyi önerdi. Bu, daha sonra görünen yıldızlara ek olarak var olabilecek diğer görünmeyen yıldız maddelerinin miktarını hesaplamak için istatistiksel bir temel sağlayacaktı.

Karanlık yıldızlar ve yerçekimi kaymaları

Michell ayrıca; Einstein'ın 1911 yerçekimi kayması argümanının habercisi olarak, gelecekteki gök bilimcilerin uzak yıldızlardaki yüzey yerçekimini hesaplamak için ışıklarının spektrumun zayıf ucuna ne kadar kaydıklarına bakarak hesaplayabileceklerini öne sürdü. Ancak Michell, Newton'un mavi ışığın kırmızıdan daha az enerjik olduğunu söylediğine atıfta bulundu, (Newton, daha büyük parçacıkların daha büyük dalga boylarıyla ilişkili olduğunu düşündü) bu nedenle Michell'in öngördüğü spektral kaymalar yanlış yöndeydi.

Işığın dalga teorisi

1796'da matematikçi Pierre-Simon Laplace, Exposition du système du Monde adlı kitabının birinci ve ikinci baskılarında aynı fikri Michell'den bağımsızca öne sürdü.

Laplace, belki de ışığın dalga teorisinin gelişmesiyle artık ışığın bir kütlesiz dalga olduğu ve bu yüzden yerçekiminden etkilenmeyeceği düşünüldüğünden sonraki baskılardan bu fikri çıkardı.

Kara deliklerle karşılaştırmalar

Dolaylı radyasyon
Karanlık yıldızlar ve kara deliklerin her ikisinin de yüzeyden kaçış hızı ışık hızına eşit veya bundan daha büyük ve kritik yarıçapı r ≤ 2 M.
Bununla birlikte, karanlık yıldız dolaylı radyasyon yayabilir - dışa yönelik ışık ve madde yeniden yakalanmadan önce kısa bir süre r = 2 M yüzeyini terk edebilir ve kritik yüzeyin dışındayken diğer maddelerle etkileşime girebilir ve hatta etkileşimlerle yıldızdan kurtulabilir. Bu nedenle, bir karanlık yıldız, "ziyaret parçacıklarının" seyrek bir atmosferine sahiptir ve madde ve ışığın bu hayalet halesi zayıf da olsa yayılabilir. Ayrıca Newton mekaniğinde ışık hızlarından daha hızlı olması mümkün olduğundan, parçacıkların kaçması mümkündür.
Radyasyon etkileri
Bir karanlık yıldız yukarıda açıklandığı gibi dolaylı radyasyon yayabilir. Kuantum mekaniği ile ilgili mevcut teorilerin tanımladığı gibi kara delikler, ilk olarak 1975'te öne sürülen Hawking radyasyonu olan farklı bir süreçle radyasyon yayarlar. Bir karanlık yıldızın yaydığı radyasyon, onun bileşimine ve yapısına bağlıdır; No-hair teoremine göre ise Hawking radyasyonunun, kara delik bilgi paradoksu bunu tartışmalı hale getirmesine rağmen, genellikle sadece kara deliğin kütlesine, yüküne ve açısal momentumuna bağlı olduğu düşünülmektedir.
Işık bükme efektleri
Eğer Newton fiziği, ışığın kütleçekimsel sapmasına sahipse ( Newton, Cavendish, Soldner ), genel görelilik, Güneş'i sıyıran bir ışık demetinde onun öngördüğünden iki kat daha fazla sapma öngörür. Bu fark, modern teori altında uzayın eğriliğinin ek katkısıyla açıklanabilir: Newton kütleçekimi, genel göreliliğin Riemann eğrilik tensörünün uzay-zaman bileşenlerine benzer iken, eğrilik tensörü yalnızca tamamen uzamsal bileşenleri içerir ancak iki form da toplam sapmaya katkıda bulunur.

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Genel görelilik</span> kütle-zaman ilişkisini tanımlayan teori

Genel görelilik teorisi, 1915'te Albert Einstein tarafından yayımlanan, kütleçekimin geometrik teorisidir ve modern fizikte kütle çekiminin güncel açıklamasıdır. Genel görelilik, özel göreliliği ve Newton'un evrensel çekim yasasını genelleştirerek, yerçekimin uzay ve zamanın veya dört boyutlu uzayzamanın geometrik bir özelliği olarak birleşik bir tanımını sağlar. Özellikle uzayzaman eğriliğine maruz kalmış maddenin ve radyasyonun, enerjisi ve momentumuyla doğrudan ilişkilidir. Bu ilişki, kısmi bir diferansiyel denklemler sistemi olan Einstein alan denklemleriyle belirlenir.

<span class="mw-page-title-main">Kara delik</span> çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, genellikle yüksek kütleli gök cismi

Kara delik; astrofizikte, çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, büyük kütleli bir gök cismidir. Kara delik, uzayda belirli nitelikteki maddenin bir noktaya toplanması ile meydana gelen bir nesnedir de denilebilir. Bu tür nesneler ışık yaymadıklarından kara olarak nitelenirler. Kara deliklerin "tekillik"leri nedeniyle, üç boyutlu olmadıkları, sıfır hacimli oldukları kabul edilir. Kara deliklerin içinde ise zamanın yavaş aktığı veya akmadığı tahmin edilmektedir. Kara delikler Einstein'ın genel görelilik kuramıyla tanımlanmışlardır. Doğrudan gözlemlenememekle birlikte, çeşitli dalga boylarını kullanan dolaylı gözlem teknikleri sayesinde keşfedilmişlerdir. Bu teknikler aynı zamanda çevrelerinde sürüklenen oluşumların da incelenme olanağını sağlamıştır. Örneğin, bir kara deliğin potansiyel kuyusunun çok derin olması nedeniyle yakın çevresinde oluşacak yığılma diskinin üzerine düşen maddeler diskin çok yüksek sıcaklıklara erişmesine neden olacak, bu da diskin yayılan x-ışınları sayesinde saptanmasını sağlayacaktır. Günümüzde, kara deliklerin varlığı, ilgili bilimsel topluluğun hemen hemen tüm bireyleri tarafından onaylanarak kesinlik kazanmış durumdadır.

Solucan deliği, uzayzamandaki farklı noktaları birbirine bağlayan kurgusal bir yapıdır ve Einstein alan denklemlerinin özel bir çözümüne dayanır.

<span class="mw-page-title-main">Şişkinlik (gökbilim)</span>

Astronomide galaktik şişkinlik bir sarmal gökadanın yoğun merkezi bölgesidir. Bu şişkinlik, gökadanın geri kalanından net bir şekilde ayrılır. Bir yandan, yüksek yoğunluğu nedeniyle çok daha parlak görünür, diğer yandan da genellikle disk düzleminin çok ötesinde bir şişkinlik gösterir. Çok uzak gökadalar söz konusu olduğunda, şişkinlik genellikle gökadadan görülebilen tek şeydir ve bu şişkinlik, eliptik gökadaları andırır.

Einstein alan denklemleri ya da Einstein denklemleri, yüksek hız ve büyük kütlelerde geçerli olan uzayzamanın geometrisi ile enerji ve momentum dağılımını ilişkilendiren doğrusal olmayan diferansiyel denklemler kümesidir. Einstein, bu denklemleri ilk kez 1915 yılında yayımlamıştır.

<span class="mw-page-title-main">Kip Thorne</span> Amerikalı fizikçi

Kip Stephen Thorne, astrofiziğe ve yer çekimi fiziğine katkılarıyla tanınan Amerikalı teorik fizikçi. Uzun süre Stephen Hawking ve Carl Sagan ile beraber çalışmıştır. 2009'a kadar Kaliforniya Teknoloji Enstitüsü'nde teorik fizik “Feynman” profesörü olarak çalıştı Albert Einstein'ın genel görelilik kuramının astrofiziksel olarak uygulanması konusunda dünyanın önde gelen uzmanlarındandır. Günümüzde araştırmalarına devam etmektedir ve aynı zamanda 2014' te yayınlanan Yıldızlararası filminin bilimsel danışmanıdır.

<span class="mw-page-title-main">Beyaz delik</span> Kara deliklerin tersine hiçbir maddenin giremediği astronomik cisim

Beyaz delik ya da ak delik, kara deliğe düşen bir maddenin solucan delikleri aracılığıyla evrenin başka bir yerinde yeniden ortaya çıktığı noktalardır. Başka bir zamana veya başka bir Bebek Evren'e de açılabilirler. Kara delikler, içine düşen hiçbir şeyin kendisinden kaçamadığı cisimlerdir. Bunların tam tersi olan beyaz deliklere ise hiçbir madde giremez, yalnız kara deliğe düşen maddeler çıkabilir. Bu sebeple beyaz delik olarak adlandırılmışlardır. Bu konuda önemli çalışmalar yapmış olan teorik fizikçi Stephen Hawking, son makalesinde solucan deliklerinin ve beyaz deliklerin bulunmadığını savunmuştur. Genel görelilikte; beyaz delik, madde ve ışık kendisinden kaçabildiği halde dışarıdan girişe izin vermeyen uzayın varsayımsal bir bölgesidir. Bu anlamda, sadece dışarıdan giriş olabilen, madde ve ışığın kaçamadığı kara deliğin tersidir. Beyaz delikler, sonsuz kara delikler teorisiyle ortaya çıkar. Gelecekteki kara deliğe ek olarak, Einstein alan denkleminin bir çözümü geçmişinde bir beyaz deliğe sahiptir. Fakat, bu alan, yerçekimsel çöküş boyunca oluşturulan kara delikler için mevcut değil ve beyaz deliğin oluşmuş olabileceği bilinen bir fiziksel süreç de yok. Şimdiye kadar hiçbir beyaz delik gözlenmemiştir. Ayrıca, termodinamik yasaları der ki, evrenin net entropisi ya artar ya da sabittir. Bu kural beyaz deliklerin entropiyi düşürme eğilimleriyle ihlal edilir. Tıpkı kara delikler gibi, beyaz delikler de kütle, yük ve açısal momentum özelliklerine sahiptir ve diğer kütleler gibi maddeleri çekerler. Ama beyaz deliğe doğru düşen nesneler asla beyaz deliğin olay ufkuna tam olarak ulaşamazlar(Aşağıda tartışılan maksimum genişletilmiş Schwarzschild çözüm durumda bile, geçmişteki beyaz delik olay ufku, gelecekteki siyah delik olay ufku olur. Böylece, beyaz deliğe doğru düşen herhangi bir nesne, sonunda siyah delik ufkuna ulaşacaktır.) Yüzeyi olmayan, yerçekimsiz bir alan hayal edin. Bu durumda, yerçekimi ivmesi herhangi bir vücut yüzeyinde en fazladır. Ama kara deliklerin bir yüzeyi olmadığından, yerçekimi ivmesi katlanarak artar; fakat asla son değerine ulaşamaz çünkü tekillikte kabul edilen bir yüzel bulunmamaktadır. Kuantum mekaniklerinde, kara delik Hawking radyasyonu yayar ve böylece radyasyon gazıyla termal dengeye gelebilir. Stephen Hawking, termal dengedeki bir kara deliğin zaman tersinin yine termal dengedeki bir kara delik olduğunu savundu çünkü termal denge durumu, zaman- tersinir- değişmezdir. Bu da, beyaz deliklerle kara deliklerin aynı nesne olduğu anlamına gelebilir. Sonradan, sıradan bir kara delikten yayılan Hawking radyasyonu, beyaz delik ışıması olarak tanımlandı. Hawking'in yarı-klasik argümanı kuantum mekanik Ads/CFT benzeşmesinde yeniden oluşturuldu. Aynı zamanda Ads/CFT'de; zaman tersi kendisiyle aynı olan bir gauge teorisinde, anti-de Sitter'deki bir kara delik bir termal gazla açıklanır.

<span class="mw-page-title-main">Hawking radyasyonu</span> karadeliklerin olay ufku etrafında gerçekleşen, kuantum dalgalanmalarından kaynaklanan parçacık çiftlerinin birisi karadelik tarafından yutulduğunda diğer parçacık yok olmaz ve uzay boşluğuna salınır. Buna Hawking ışıması denir.

Hawking radyasyonu veya Hawking ışınımı, İngiliz fizikçisi Stephen Hawking'in 1975 yılında yayınlanan makalesinde kara deliklerin yayması gerektiğini öne sürdüğü teorik bir radyasyondur. Makalede kara deliklerin parçacık yaydığını ve bu sayede kütle kaybettiğini ifade etmiştir. Kuantum alan teorisinin genel görelilik ile beraberce uygulanması sonucu ortaya atılmıştır. Genel görelilik teorisine göre kara delikler küçülemezler, yani olay ufuklarının alanı azalamaz. Hawking'in bulduğu sonuç bundan dolayı çok şaşırtıcıydı.

<span class="mw-page-title-main">Yıldız kaynaklı kara delik</span>

Yıldız kaynaklı kara delik, bir yıldızın kütleçekimsel çöküşüyle oluşan bir kara deliktir. Kütleleri yaklaşık 5 ila birkaç on güneş kütlesi arasında değişir. Bunlar süpernova patlamalarının kalıntılarıdır ve bir tür gama ışını patlaması olarak gözlemlenebilirler. Bu kara deliklere ayrıca çökmüş yıldız (collapsar) olarak da atıfta bulunulur.

<span class="mw-page-title-main">Genel göreliliğe giriş</span>

Genel görelilik veya genel izafiyet, 1907 ve 1915 yılları arasında Albert Einstein tarafından geliştirilen bir çekim teorisidir. Genel göreliliğe göre, kütleler arasında gözlenen kütleçekim etkisi uzayzamanın eğrilmesinden kaynaklanır.

Mikro kara delikler, mekanik kuantum kara delikleri veya mini kara delikler olarak da adlandırılır, varsayımsal minik kara delikler, kuantum mekaniği etkileri için önemli bir rol oynar.

1915 yılında ortaya atılan genel görelilik kuramı, somut ve empirik kurallarla temellendirilmiyordu. Merkür'ün günberisindeki anormal devinimler sonucu oluşan ve felsefi temelde Newton'un evrensel kütleçekim kuralları ile özel görelilik kuramını birleştirebilme özelliğine sahipti. 1919 Yılında gerçekleşen güneş tutulması sırasında ışığın kütleçekim nedeniyle büküldüğü ilk kez gözlemlenmişti. Bu gözlem genel görelilik için ilk kanıttı. Bu ışık kütleçekim alanına eğilmiş ve genel görelilik kuramı ile 1919 yılında bir hat oluşturmuştur. Fakat bunlar 1959 yılında çeşitli genel görelilik tahminlerinin test edilmelerine kadar bir program olarak adlandırılmıyorlardı. Bu testler zayıf çekim alanı içerisinde teori sapmalarıyla sınırlandı. 1974 yılında başlamak üzere Hulse Taylor ve diğerleri bizim Güneş Sistemi'mizden çok daha fazla kütleçekime sahip pulsar yıldızlarının ikili davranışları üzerinde çalıştı. Bizim Güneş Sistemi'miz ve pulsar yıldızlarının genel görelilik kuramları yerellerde başarıyla incelenmiştir.

Fizik'te, yerçekimi teorileri kütleli cisimlerin hareket mekanizmalarını kapsayan etkileşimleri esas alır. Antik zamanlardan bu yana birçok Yerçekimi teorisi ortaya atılmıştır.

<span class="mw-page-title-main">İkili kara delik</span>

İkili kara delik, iki kara deliğin birbirine yakın bir yörüngede bulunduğu sistemdir. Yıldızsal ikili kara delik sistemleri ve süper kütleli ikili kara delik sistemleri olarak iki alt grupta incelenebilir. Yıldızsal ikili kara delik sistemleri büyük kütleli çift yıldız sistemlerinin kalıntısıdır. Süper kütleli ikili kara delik sistemlerinin ise galaksilerin birleşmesi ile oluştuğu düşünülmektedir.

<span class="mw-page-title-main">Kütleçekimsel tekillik</span> koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum

Kütleçekimsel tekillik ya da uzay-zaman tekilliği koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum olarak tanımlanır. Bu nicelikler, maddenin yoğunluğunun da dahil olduğu uzay-zaman eğriliklerinin skaler değişmeyen nicelikleridir. Uzay zamanın normal kuralları tekillik içinde var olamaz.

Tüy yumakları birtakım süpersicim teoristleri tarafından, kara delikleri kuantumsal açıdan doğru tanımlamak amacıyla ortaya atılmış bir teoridir. Bu teori, modern fiziğin kara deliklere bakışındaki iki inatçı problemi çözmektedir.

  1. Karadeliğe düşen maddeler ve enerjiler, tekilliğin içerisinde kaybolurlar, dolayısıyla karadelik içine ne düşerse düşsün hiçbir fiziksel değişim geçirmezler, buna bilgi paradoksu denir.
  2. Klasik karadelik teorisine göre, karadeliğin kalbi sonsuz uzay zaman eğrilikleriyle doludur, bunun sebebi sonsuz yer çekimi ve sıfır hacimdir. Modern fizik ise sıfır ve sonsuz gibi parametreler işin içine girdiğinde bozulmaktadır.
<span class="mw-page-title-main">Görelilik teorisi</span> zamanın göreceli olduğunu söyleyen teori

Görelilik teorisi, Albert Einstein'ın çalışmaları sonucu önerilen ve yayınlanan, özel görelilik ve genel görelilik adlarında birbirleriyle ilişkili iki teorisini kapsar. Özel görelilik, yer çekiminin yokluğunda tüm fiziksel fenomenler için geçerlidir. Genel görelilik, yer çekimi yasasını ve bu yasanın diğer doğa kuvvetleri ile ilişkisini açıklar. Astronomi de dahil olmak üzere kozmolojik ve astrofiziksel alem için geçerlidir.

<span class="mw-page-title-main">Galaksilerarası yıldız</span>

Bir Galaksiler arası yıldız, kümeler arası yıldız, haydut yıldız veya göçmen yıldız olarak da bilinir, herhangi bir gökadaya kütleçekim bakımından bağlı olmayan bir yıldızdır. 1990'da büyük tartışma konusu olsa da, artık diğer yıldızlar gibi galaksilerde oluştukları ama gökadaların çarpışması veya bir yıldız sisteminin bir kara deliğe çok yakınlaşması sonucu oluştukları genel kabul görmüştür.

Karanlık yıldız, günümüzdeki yıldızlar oluşup gelişmeden önce evrenin başlarında var olduğu düşünülen bir yıldız türüdür.