İçeriğe atla

Karakteristik fonksiyon

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Burada t bir gerçel sayı, i sanal birim değer ve E beklenen değer olurlar.

Eğer FX yığmalı dağılım fonksiyonu ise, karakteristik fonksiyon Riemann-Stieltjes integrali kullanılarak şöyle ifade edilebilir:

Rassal değişken için bir olasılık yoğunluk fonksiyonu, yani fX, var ise karakteristik fonksiyonu şöyle ifade edilir:

Eğer X bir vektör-değerli rassal değişken ise, t değeri bir vektör olarak ve t.X bir nokta çarpan olarak kabul edilip tanım değiştirilmez.

R üzerinde veya Rn üzerindeki her olasılık dağılımının bir karakteristik fonksiyonu bulunur, çünkü sınırlı bir fonksiyonunun ölçümü sonsuz olan bir uzayda integrali alınmaktadır. Her bir karakteristik fonksiyonu için tek bir olasılık dağılımı vardır. (İçinde olan) bir simetrik olasılık yoğunluk fonksiyonu için karakteristik fonksiyon gerçeldir; çünkü ifadesinden elde edilen ile ifadesinden elde edilen sanal parçalar birbirini eksiltmektedir.

Lévy süreklilik teoremi

Ters alma teoremi

Bu özellikten daha kapsamlı bir özellik daha vardır. İki gayet iyi belirlenmiş yığmalı olasılık dağılımı, hiçbir karakteristik fonksiyonuna ortak sahip değildirler. Bir karakteristik fonksiyon, φ, verilmiş ise, karşıtlı bağlı olup çıkartıldığı yığmalı dağılım fonksiyonu F yeniden şöyle meydana getirilir:

Genel olarak bu bir uygunsuz integralidir; çünkü Lebesgue integrali olacağına koşullu olarak integrali çıkartılmış olan bir fonksiyonu olabilir. Yani mutlak değerinin integrali sonsuz olabilir.

Bochner-Khinchin teoremi

Herhangi bir fonksiyon belli bir olasılık yasası olan karşılığı olan bir karakteristik fonksiyon olması için yalnızca ve yalnızca şu üç koşulun sağlanması gerekir:

  1. sürekli olmalıdır.
  2. olmalıdır.
  3. bir kesin pozitif fonksiyon olmalıdır. (Dikkat edilirse bu koşul biraz karmaşık olup ile eş anlamda değildir.)

Karakteristik fonksiyonların yararları

Levy'nin süreklilik teoremi dolayısıyla karakteristik fonksiyonlar, merkezsel limit teoremini ispat etmek için çok defa kullanılmaktadır. Bir karakteristik fonksiyonunun kullanılmasıyla yapılan hesaplarda atılacak en becerikli adım, eldeki fonksiyonun belli bir dağılımın karakteristik fonksiyonu olduğunun farkına varmak suretiyle ortaya çıkar.

Temel özellikler

Bağımsız olan rassal değişkenlerin fonksiyonları ile uğraşmak için özellikle karakteristik fonksiyonlar kullanılır. Örneğin, X1, X2, ..., Xn bir seri bağımsız (ama mutlaka aynı şekilde dağılım göstermeyen) rassal değişken iseler ve ailer sabit olup

ise Sn için karakteristik fonksiyon şöyle verilir:

Özellikle

olur. Bunu görmek için bir karakteristik fonksiyonun tanımı yazılısın:

.

Burada gözlenebilir ki üçüncü ve dördüncü ifadelerin eşitliğini sağlamak için gereken koşul ve 'nin birbirinden bağımsız olmasıdır.

İlgi çekebilen bir diğer hal de, olduğu halde 'nin örneklem ortalaması olmasıdır. Bu halde ortalama yerine konulursa

olur

Momentler

Karakteristik fonksiyonlar, bir rassal değişkenin momentlerini bulmak için de kullanılabilir. Eğer ninci moment mevcut ise, karakteristik fonksiyonun n dereceye kadar arka arkaya türevi alınabilir ve

olur.

Örneğin, bir standart Cauchy dağılımı göstersin. O halde bunun noktasında türevinin bulunmadığını göstermek, Cauchy dağılımı için hiçbir beklenen değer olmadığını gösterir. Aynı örneğinde tane bağımsız gözlem için örneklem ortalaması olan in karakteristik fonksiyonu

olur ve bunu standart bir Cauchy dağılımı için karakteristik fonksiyon olduğu gözümlenebilir. Böylece Cauchy dağılımı için örneklem ortalaması için dağılım anakütle dağılımı ile aynı dağılım olduğu anlaşılmaktadır.

Bir karakteristik fonksiyonun logaritması bir kumulant üreten fonksiyon olur ve bu fonksiyon kumulantları bulmak için yararlıdır.

Bir örneğin

Çoklu-değişirli karakteristik fonksiyonlar

Örneğin

Matris değerli rassal değişkenler

İlişkili kavramlar

Bibliyografya

  • Lukacs E. (1970) Characteristic Functions. Griffin, London. pp. 350
  • Bisgaard, T. M., Sasvári, Z. (2000) Characteristic Functions and Moment Sequences, Nova Science

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Normalleştirme sabiti, olasılık kuramı ve matematiğin diğer çeşitli alanlarında ortaya çıkar. Örneğin normal dağılımın normalleştirme sabitini hesaplamak için Gauss integrali kullanılabilir.

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.