İçeriğe atla

Kaprekar sayıları

Kaprekar sayıları, 1949 yılında Hint matematikçi Kaprekar tarafından tariflenen sayılardır.

n basamaklı bir t Kaprekar sayısının karesi alınıp sağdaki n basamağı solda kalan n-1 basamağa eklendiğinde sonuç yine t sayısını verir.

Örnek:

55, iki basamaklı bir sayıdır.

552 = 3025, sağdan iki basamak 25, soldan iki basamak 30.

Bu iki sayının toplamı 30+25=55 yani sayının kendisidir.

1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4879, 142857 sayıları da diğer bazı Kaprekar sayılarıdır.

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Doğal sayılar</span> sayma sayıları kümesine 0ın eklenmesiyle oluşan sayılar kümesi

Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

11, bir sayı. Sodyumun element numarasıdır.

<span class="mw-page-title-main">Rakam</span>

Rakam, sayıları yazılı olarak göstermeye yarayan sembollerden her biri. Pek çok dil ve kültürde kullanılan Arap kökenli rakamlar şunlardır:

<span class="mw-page-title-main">Parite (matematik)</span> hh

Parite, matematikte herhangi bir tam sayının çift ya da tek olması durumudur. Çift sayılar, 2 ile kalansız bölünebilen sayılardır. Tek sayılar ise 2 ile kalansız bölünemeyen sayılardır. Örneğin onluk sistemde 4 ve 8 rakamlarının her ikisi de çift olduğu için "aynı pariteye sahip" kabul edilirler.

▪ Çift doğal sayılar: 0, 2, 4, 6, 8,...
▪ Tek doğal sayılar: 1, 3, 5, 7, 9,...
▪ 2n = 0 eşitliğini sağlayan bir tam sayı mevcuttur: 2 × 0 = 0.
▪ 2n + 1 = 0 eşitliğini sağlayacak bir n tam sayısı yoktur.
▪ Birden fazla basamaklı sayıların birler basamağında 0'ın olması, bu sayıların asal çarpanları arasında 2 ve 5'in olduğunu, dolayısıyla çift sayı olduklarını gösterir.

Hint matematikçi Kaprekar (1905-1986) tarafından tanımlanan, dört basamaklı sayılara en fazla yedi kez aşağıdaki işlemler uygulandığında ortaya çıkan sabit 6174 sayısı.

<span class="mw-page-title-main">İkili sayı sistemi</span>

İkili sayılar sayıların 2 tabanında yazılmasıyla elde edilir. Dolayısıyla tüm sayılar 0 ve 1 rakamları kullanılarak ifade edilirler. Elektronik devrelerindeki kolay uygulanabilmeleri nedeniyle günümüz bilgisayarlarının neredeyse tamamında kullanılırlar.

<span class="mw-page-title-main">Üs</span> matematik terimi

Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem. Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:

<span class="mw-page-title-main">Hızlı sıralama</span>

Hızlı sıralama, günümüzde yaygın olarak kullanılan bir sıralama algoritmasıdır. Hızlı sıralama algoritması n adet sayıyı, ortalama bir durumda, karmaşıklığıyla, en kötü durumda ise karmaşıklığıyla sıralar. Algoritmanın karmaşıklığı aynı zamanda yapılan karşılaştırma sayısına eşittir.

Taban aritmetiğinde iki basamaklı bir (ab) sayısı 10a+b şeklinde, üç basamaklı bir (abc) sayısı 100a + 10b + c şeklinde, dört basamaklı bir (abcd) sayısı 1000a + 100b + 10c + d şeklinde çözümlenir ve basamak sayısı arttıkça bu durum benzer şekilde devam eder.

Bölük, matematikteki basamakların her üç tanesinin bir araya gelmesiyle oluşur. Bölükler sayıların sağdan üçerlik gruplar halinde ayrılmasıyla oluşur. Birler bölüğü, binler bölüğü, milyonlar bölüğü gibi soldaki ilk basamağın adıyla anılır. Beş basamaklı sayılardan itibaren bölükler aralarında boşluk bırakılarak yazılır. Bölükler arasına nokta konulmaz.

<span class="mw-page-title-main">Dörtyüzlüsel sayı</span>

Dörtyüzlüsel sayı, üçgen tabanlı ve bir piramidi temsil eden biçimli sayıdır. n. dörtyüzlüsel sayı ilk n üçgensel sayının toplamına eşittir.

Arecibo mesajı, frekans modülasyonlu radyo dalgaları yoluyla, Arecibo radyo teleskobunun yenilenmesini kutlamak için yapılan 16 Kasım 1974 tarihindeki törende, yalnızca bir kez uzaya gönderilmiştir. Törenin yapıldığı tarihte ve yerde, gökyüzünde görülebilen yakın ve geniş bir yıldız topluluğu olması sebebiyle, 25.000 ışık yılı uzaklıktaki M13 küresel yıldız kümesi bölgesine doğru gönderilmiştir. Mesaj 1679 ikilik sayı sistemi rakamından oluşur ve yaklaşık olarak 210 bayttır. 2380 MHz frekanstadır ve "sıfırlar" ve "birler" arasındaki fark 1000 kW gücündeki 10 Hz'lik değişimlerle ayarlanmıştır. Bilgi saniyede 10 bit olacak şekilde yayımlanmıştır. Yayının toplam süresi üç dakikadan daha kısa sürmüştür.

<span class="mw-page-title-main">Dal-yaprak grafikleri</span>

Dal-yaprak grafikleri, betimsel istatistik ve "istatistiksel grafik" konusu olup sayısal olarak elde edilen verilerin grafik olarak görsel şekilde özetlemek amacıyla çizilir. Bu çizimi tek değişkenli verileri incelerken kullanılır. Bu gösterim şekli veri setinin yapısını, örüntüsünü veya genel eğilimini gösterir.

Mercalli şiddet ölçeği, bir depremin şiddetini ölçmek için kullanılan ölçektir. Depremin yeryüzüne, insanlara, cisimlere ve yapılara olan etkisini I ile XII arasında bir ölçek ile nicelendirir; I hissedilmez, XII ise tam yıkım demektir. Değerler depreme olan uzaklığa ve yerin fiziksel özelliklerine bağlı olarak değişir, en yüksek şiddet depremin merkezi civarında olur. Depremi yaşamış olan kişilerden veriler toplanır ve onların bulunduğu yer hakkında bir şiddet değeri elde edilir.

<span class="mw-page-title-main">İkinin tümleyeni</span>

Bir ikili sayının ikiye tümlenmesi, kendisinden büyük ve 2'nin tam sayı üssü olan en küçük tam sayıdan çıkarılması ile gerçekleştirilir. Elde edilen sayının ikili sayı aritmetiğinde orijinal sayının eksi işaretlisi olarak davranması nedeniyle, tam sayı değerleri bilgisayarda temsil etmek için kullanılan ikinin tümleyeni gösterimi bu işlemi temel almıştır. -1 ile çarpmanın ikinin tümleyeni kullanılarak gerçekleştirildiği bu gösterime göre oluşturulmuş sayıların değerleri aşağıdaki formül kullanılarak hesaplanabilir.

<span class="mw-page-title-main">Napier'in kemikleri</span> John Napier tarafından icat edilmiş matematiksel aygıt

Napier'in kemikleri, John Napier tarafından oluşturulan bir abaküstür. Pratik olarak çarpma, bölme ve karekök alma işlemleri için kullanılabilir. Napier, bu eserini Rabdology adıyla 1617'nin sonunda, İskoçya Edinburgh'da yayımlamıştır. Napier'in kemikleri, Napier'in adıyla ilişkili olan logaritma ile aynı şey değildir.

<span class="mw-page-title-main">BCD kodu</span>

BCD kodu, bilgisayar ve elektronik sistemlerinde onluk tabandaki (decimal) sayıların ikilik tabana (binary) dönüştürülmesi için kullanılan sayısal kodlama metodudur. Bu dönüştürme işlemi yapılırken öncelikle sayının her bir basamağı tek tek ikilik tabana çevrilir ve ardından her basamağın karşılık geldiği binary değerler sırasıyla birleştirilerek sayının BCD Kodu ile gösterimi elde edilir.

Basamak veya hane, matematikte bir sayıyı oluşturan rakamlardan her birinin o sayı içerisindeki konumunu ifade eder.