İçeriğe atla

Kaprekar sabiti

Hint matematikçi Kaprekar (1905-1986) tarafından tanımlanan, dört basamaklı sayılara en fazla yedi kez aşağıdaki işlemler uygulandığında ortaya çıkan sabit 6174 sayısı.

İşlemler, tüm basamakları aynı sayıdan oluşmayan (2222 gibi - ilk adımda sıfır sonucunu verecektir) ve herhangi üç basamağındaki sayılar aynı olup kalan bir basamaktaki sayı bu sayıdan bir büyük ya da bir küçük olmayan (1112, 5565 veya 8788 gibi - ilk adımda 999 sayısını verecektir) dört basamaklı sayılara uygulandığında en fazla yedi adımda sıfır veya 6174 sabit sayısını verir.

  1. Yukarıdaki şartlara uygun dört basamaklı bir sayı alınır.
  2. Sayının basamaklarını büyükten küçüğe ve küçükten büyüğe doğru sıralayarak iki adet dört basamaklı sayı elde edilir.
  3. Elden edilen sayılardan büyükten küçüğü çıkarılır.
  4. 2. adım tekrar edilir.

En fazla yedi adımda sıfır ya da 6174 sabit sayısı elde edilecek ve kısır döngüye girilecektir.

Örnek:

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Doğal sayılar</span> sayma sayıları kümesine 0ın eklenmesiyle oluşan sayılar kümesi

Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Roma rakamları</span> Roma rakam sisteminde kullanılan sayılar

Roma rakamları veya Romen rakamları sayısal sistemi, antik Roma kaynaklıdır. Orta Çağ'ın son dönemlerine dek, Avrupa'da yaygın olarak kullanılmıştır.

<span class="mw-page-title-main">Rakam</span>

Rakam, sayıları yazılı olarak göstermeye yarayan sembollerden her biri. Pek çok dil ve kültürde kullanılan Arap kökenli rakamlar şunlardır:

e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz. Yaklaşık değeri şöyledir:

<span class="mw-page-title-main">Bölme</span> Matematik işlemi

Bölme, aritmetiğin temelini oluşturan dört ana işlemden biri olarak kabul edilir. Diğer üç ana işlem ise toplama, çıkarma ve çarpma olarak sıralanır. İşlem sırasında bölünen miktar bölünen olarak adlandırılırken, bu miktarın bölündüğü sayıya bölen denir ve işlemin sonucunda elde edilen değer bölüm olarak tanımlanır.

<span class="mw-page-title-main">Üs</span> matematik terimi

Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem. Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:

Taban aritmetiğinde iki basamaklı bir (ab) sayısı 10a+b şeklinde, üç basamaklı bir (abc) sayısı 100a + 10b + c şeklinde, dört basamaklı bir (abcd) sayısı 1000a + 100b + 10c + d şeklinde çözümlenir ve basamak sayısı arttıkça bu durum benzer şekilde devam eder.

Googol, matematikteki büyük sayılardan biridir ve 10100'e eşittir. Başka bir deyişle 1 googol, 1 rakamına yüz sıfır ekleyerek yazılır. Bu terim Amerikalı matematikçi Edward Kasner'ın yeğeni Milton Sirotta (1929–1980) tarafından 1938 yılında kullanılmaya başlanmıştır. Milton bu sırada dokuz yaşındaydı. Kasner bu kavramı Matematik ve Hayal Gücü adlı kitabında da ele almıştır.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

<span class="mw-page-title-main">İkinin tümleyeni</span>

Bir ikili sayının ikiye tümlenmesi, kendisinden büyük ve 2'nin tam sayı üssü olan en küçük tam sayıdan çıkarılması ile gerçekleştirilir. Elde edilen sayının ikili sayı aritmetiğinde orijinal sayının eksi işaretlisi olarak davranması nedeniyle, tam sayı değerleri bilgisayarda temsil etmek için kullanılan ikinin tümleyeni gösterimi bu işlemi temel almıştır. -1 ile çarpmanın ikinin tümleyeni kullanılarak gerçekleştirildiği bu gösterime göre oluşturulmuş sayıların değerleri aşağıdaki formül kullanılarak hesaplanabilir.

Pivot ya da pivot element algoritmaların bir matris, dizi veya bir tür sonlu küme içinden, bir hesaplamada kullanılmak üzere seçtiği ilk elemandır. Matris algoritmaları için pivotun en azından sıfırdan farklı olması istenir ve genellikle sıfırdan uzak bir değer seçilir. Bu durumda algoritmanın düzgün çalışması için uygun pivot seçiminde satır veya sütunlar aralarında yer değiştirtilebilir.

<span class="mw-page-title-main">Napier'in kemikleri</span> John Napier tarafından icat edilmiş matematiksel aygıt

Napier'in kemikleri, John Napier tarafından oluşturulan bir abaküstür. Pratik olarak çarpma, bölme ve karekök alma işlemleri için kullanılabilir. Napier, bu eserini Rabdology adıyla 1617'nin sonunda, İskoçya Edinburgh'da yayımlamıştır. Napier'in kemikleri, Napier'in adıyla ilişkili olan logaritma ile aynı şey değildir.

<span class="mw-page-title-main">Temel aritmetik</span>

Temel aritmetik, aritmetiğin en basit kısmıdır ve toplama, çıkarma, çarpma, bölme gibi işlemlerden oluşur.

Basamak veya hane, matematikte bir sayıyı oluşturan rakamlardan her birinin o sayı içerisindeki konumunu ifade eder.

Lineer cebirde bir matris, Gauss eliminasyonunun sonucu olan şekle sahipse eşelon biçimindedir.