İçeriğe atla

Kapasite faktörü

Elektrik santralinin net kapasite faktörü (KF), santralin belli bir periyotta ürettiği toplam enerjinin tam kapasitede üretebileceği enerjiye bölümüdür. Kapasite faktörü kullanılan yakıt türüne ve santralin tasarımına bağlı olarak aşırı derecede değişir. Kapasite faktörü, uygunluk faktörü veya verimlilik ile karıştırılmamalıdır.

Temel hesaplamalar

Termik santral

1000 MW'lık kapasiteli bir termik santral 1 ayda (30 günde) 648.000 megawatt-saat üretmiş olsun. Eğer santral tam kapasitede çalışmış olsaydı aynı zaman periyodunda, 1000 MW X 30 gün X 24 saat/gün = 720.000 megawatt-saat üretecekti. İşte kapasite faktörü gerçek üretilen enerjinin mümkün olan maksimum güce (nominal güç) bölümüdür. Bu örnekte kapasite faktörü, 0.9 (%90)'dur, şöyle ki:

Rüzgâr tarlası

Burton Wold Rüzgâr Tarlası, her birinin kurulu gücü 2 MW olan toplam 20 MW kurulu kapasiteye sahip on adet Enercon E70-E4 tip rüzgâr türbininden oluşur. 2008'de rüzgâr tarlası 43.416 megawatt-saat elektrik üretti. Bu rüzgâr tarlası için kapasite faktörü 2008'de %25'ten düşüktü:

Hidroelektrik santrali

2010 itibarıyla Çin'deki Üç Vadi Santrali (Three Gorges Dam) dünyada en büyük kurulu kapasiteye sahip santraldir. 2009'da tam kapasite ile çalışmadı. Her biri 700MW'lık olan 26 generatörden ve 50'şer MW'lık 2 iç ihtiyaç generatöründen oluşur. Böylece toplam kurulu kapasitesi 18.300 MW'tır. 2009'da toplam üretimi 79,47 TWh idi. Bu da kapasite faktörünün %50'nin altında olduğunu gösteriyor, şöyle ki:

Kapasite faktörünü düşüren sebepler

Bir santralin tam kapasitede çalışamamasının birkaç sebebi vardır. İlk sebep parçaların arızasından veya işlevini kaybetmesinden dolayı meydana gelen hizmet veya işlemdir. Bu, kapasitenin büyük oranda düşmesine neden olur. Ana yük santrallerinin birim enerji başına daha az maliyeti vardır. Çünkü maksimum verimlilik için tasarlanmışlardır ve daima yüksek çıkış (enerji) verirler. Katı madde yakan jeotermal santraller, nükleer santraller, kömür santralleri ve biyoenerji santralleri hemen hemen daima ana yük santralleri olarak çalışır.

Bir santralin kapasite faktörünün %100 olmamasının ikinci sebebi, elektriğin gerekli olmadığı durumlarda çıkışın azaltılabilmesidir. Böylece elektrik ihtiyacı olmadığı durumlarda üretime ara verilebilir.

Üçüncü sebep de saniyedeki değişimdir. Hidroelektrik santrallere daha fazla generatör eklenerek kurulu kapasitesiteleri arttırabilir. Yakıt kaynağı (örn;su) harcanmamış olur.

Yük takip güç santralleri

Yük takip güç santrallerinde (orta düzey güç santralleri olarak da adlandırılır) de kapasite faktörü, verimlilik ve elektrik birim maliyeti terimleri çok önemlidir. Bu santraller, maliyet ve talebin en yüksek olduğu anda kendi elektriğinin çoğunu gün içinde üretirler. Yine de geceleyin ve orta düzey santrallerin sistemden çıktıklarında veya çıkış güçlerini azalttıklarında talep ve elektrik maliyeti çok düşer.

Kapasite faktörü ve yenilenebilir enerji

Güneş enerjisi, rüzgâr gücü ve hidroelektrik gibi birkaç kaynaktan yenilenebilir enerji sağlandığında, kullanışsız kapasite ile ilgili üçüncü bir sebep vardır. Santral elektrik üretebilir, fakat yakıtı (rüzgâr, güneş ışığı veya su) kullanılamayabilir. Hidroelektrik santralinin üretimi, su akışındaki değişimden dolayı, su seviyesini çok yüksekte tutmakla veya çok düşürmekle etkilenebilir. Bununla beraber, güneş, rüzgâr ve hidroelektrik santraller yüksek uygunluk faktörlerine sahiptir. Bu yüzden yakıt kullanıldığında, daima elektrik üretmeleri gerekir.

Hidroelektrik santraller sevkedilebilirliğinden dolayı faydalı (kullanılabilir) su bulunduğunda, yük takibi için de kullanışlıdırlar. Çünkü hidroelektrik santral durağan durumdan, tam güce sadece birkaç dakika içinde alınabilir.

Rüzgâr tarlaları, rüzgârın doğal davranışından dolayı çok aralıklıdır. Fakat bir rüzgâr tarlası geniş yer kaplayan, yüzlerce rüzgâr türbininden meydana gelebileceğinden dolayı, türbinlerin zararlarına karşı tam meyillidir. Büyük rüzgâr tarlasındaki birkaç rüzgâr türbini planlı veya plansız bakım için durdurulabilir ve geri kalan türbinler rüzgârdan enerji üretmeye devam edebilirler.

Güneş enerjisi, dünyanın günlük dönüşünden ve bulutların güneş ışınlarını kapamasından dolayı, değişkendir. Ana yük ihtiyaçlarını karşılamak için, ısı enerjisi depolama sistemi kullanılabilir ve güneş panellerinin sayısını arttırılabilir.

Jeotermal, birçok diğer güç kaynaklarından daha büyük kapasite faktörüne sahiptir ve jeotermal kaynaklar haftanın her günü 24 saat kullanılabilir. Jeotermal güç, nükleer pile benzetilebilir. Çekirdekteki veya toprağın içindeki çürük radyoaktif elementlerden ısı üretilir.

Tipik kapasite faktörleri

  • Rüzgâr tarlaları: %20-40.
  • Dünya çapında ortalama hidroelektrik: %44.
  • ABD'nin Massachusetts eyaletindeki fotovoltaik güneş: %12-15.
  • ABD'nin Arizona eyaletindeki fotovoltaik güneş: %19

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Jeotermal enerji</span> jeotermal kaynaklardan ve bunların oluşturduğu enerjiden doğrudan veya dolaylı yollardan faydalanma

Jeotermal yerkabuğunun çeşitli derinliklerinde birikmiş ısıya verilen genel addır. Jeotermal akışkan ise içerisinde birçok farklı element ve diğer maddeleri içeren sıcak su, buhar ve gazlardır. Jeotermal enerji bu akışkanların sahip olduğu entalpi ve ısının yarattığı enerjinin adıdır. Bu enerji, diğer farklı enerji çeşitlerine çevrilerek ya da direkt ısı enerjisinden faydalanılarak yenilenebilir enerji kaynağı oluşturmaktadır. Jeotermal enerji yeni, yenilenebilir, sürdürülebilir, tükenmez, güvenilir, çevre dostu, yerli ve yeşil bir birincil enerji kaynağıdır. İçinde su bulunmayan sıcak kuru kayalar da jeotermal enerji kaynağıdır.

Türkiye'de her yıl yaklaşık 300 TWsa elektrik üretilmektedir. Burada en önemli santraller listelenmiştir.

Watt, SI'de, uluslararası standart güç birimidir.

<span class="mw-page-title-main">Yenilenebilir enerji</span> Bir enerji türü

Yenilenebilir enerji, güneş ışığı, rüzgar, yağmur, gelgitler, dalgalar ve jeotermal ısı gibi karbon nötr doğal kaynaklardan elde edilebilen ve insan zaman ölçeğinde doğal olarak yenilenen kaynaklardan elde edilebilen enerjiye denir. Bu kaynaklar güneş enerjisi, rüzgâr enerjisi, dalga enerjisi, jeotermal enerji, hidrolik enerjisi, biyokütle enerjisi olarak sıralanabilir. Bu tür bir enerji kaynağı, yenilenmekte olduklarından çok daha hızlı kullanılan fosil yakıtların tam tersidir.

<span class="mw-page-title-main">Hidroelektrik santrali</span>

Hidroelektrik santrali, barajda biriken su yer çekimi potansiyel enerjisi içermektedir. Su, belli bir yükseklikten düşerken, enerjinin dönüşümü prensibine göre Yerçekimi Potansiyel Enerjisi önce kinetik enerjiye daha sonra da türbin çarkına bağlı jeneratör motorunun dönmesi vasıtasıyla potansiyel elektrik enerjisine dönüşür. Buna da yenilenebilir enerji sınıfına giren hidroelektrik enerji santrali denir. Fizikten bilindiği gibi 1 kg'lık bir kütle, 1 m yükseklikten düştüğünde:

<span class="mw-page-title-main">Elektrik santrali</span> elektrik enerjisi üreten tesis

Elektrik santralı, elektrik üretecek bir fabrikayı meydana getiren tesislerin tümü.

<span class="mw-page-title-main">Rüzgâr çiftliği</span>

Rüzgâr tarlası veya rüzgâr çiftliği, elektrik üretimi için kullanılan ve aynı yerde bulunan rüzgâr türbinleri grubudur. Özel türbinler orta gerilim güç sistemine ve ağ şebekesine bağlanır. Elektrik şebekesinin orta gerilimdeki elektrik akımını bir transformatör yardımıyla yüksek gerilim iletim hattına bağlar.

<span class="mw-page-title-main">Rüzgâr gücü</span> Rüzgârdan elektrik enerjisi üretimi

Rüzgâr gücü, elektrik üretmek için rüzgâr türbinleri, mekaniksel güç için yel değirmeni, su veya kuyu pompalama için rüzgâr pompaları veya gemileri yürütmek için yelkenler kullanarak rüzgârın kullanışlı formundaki rüzgâr enerjisinin sonucudur.

<span class="mw-page-title-main">Rüzgâr gücünün çevre üzerindeki etkisi</span>

Rüzgâr enerjisinin başlıca etkisi, fosil yakıtlı santrallerin elektrik üretiminde neden olduğu kirliliği göstermemesidir. Değişik enerji kaynakları, klasik enerji kaynaklarıyla yer değiştirebilirken, rüzgâr enerjisinin çevresel maliyeti çok daha düşük olabilir.

<span class="mw-page-title-main">Almanya'da rüzgâr gücü</span>

Almanya'da rüzgâr gücü, her sene toplam üretimdeki payını önemli derecede artırmaktadır ve Almanya'nın enerji vizyonunun temel parçalarından biridir. 2015 itibarıyla, ülke çapındaki rüzgâr türbini kurulu gücü 44,947 MW'tır (megawatt). Bu güçle Almanya dünya sıralamasında % 10.4'lük payla Çin ve ABD'den sonra üçüncü sıradadır.

<span class="mw-page-title-main">Birleşik Krallık'ta rüzgâr gücü</span>

Birleşik Krallık'ta rüzgâr gücünün kurulu kapasitesi, Ocak 2010 itibarıyla 4 gigawatt (GW)'tan fazladır. Rüzgâr gücü, Birleşik Krallık (BK)'ta biyokütle'den sonra ikinci en büyük yenilenebilir enerji kaynağıdır. 2009'da 1 GW'dan fazla yeni rüzgâr güç kapasitesi çevrimiçi satıldı. Bunun 800 MW'ı karadaki, 285 MW denizdeki rüzgâr tarlalarından üretildi. İngiliz Rüzgâr Enerisi Birliği (BWEA), 2010'da kurulu kapasitenin 5-6 GW'ı aşacağını tahmin etmektedir.

<span class="mw-page-title-main">Enerji kaynakları</span> enerji elde edilebilen fiziksel veya kimyasal fenomen

Enerji kaynakları, herhangi bir yolla enerji üretilmesini sağlayan kaynaklardır. Dünya üzerindeki enerji kaynakları, klasik ve alternatif kaynaklar olmak üzere ikiye ayrılabilir. Birincil enerji kaynaklarından kullanım oranları; %33,1 petrol, %30,3 kömür, %23,7 doğalgaz, hidrolik ve diğer yenilenebilir %8, nükleer enerji %5.

<span class="mw-page-title-main">Enerji dönüşümü</span> Enerjiyi bir veya iki formdan diğerine dönüştürme süreci

Enerji dönüşümü enerjinin bir biçimden diğerine dönüşümüdür. Fizikte enerji terimi bir sistemdeki belirli değişiklikleri oluşturma kapasitesini açıklar. Dönüşümde entropinin sınırlamaları göz ardı edilir. Sistemlerin toplam enerji dönüşümü, yalnızca enerjinin eklenmesi veya çıkarılması ile sağlanabilir. Termodinamiğin birinci kanununa göre enerji, dönüştürülebilen bir büyüklüktür. Bir sistemin toplam kütle miktarı, enerjisinin bir ölçüsüdür. Bir sistemdeki enerji dönüştürülebildiğinden dolayı, farklı bir hale veya başka bir biçime dönüşebilir. Çoğu haldeki enerji, birçok fiziksel iş yapmak için kullanılabilir. Enerji doğal süreçler veya makinelerde kullanılabilir. Ayrıca ısı, ışık veya harekete dönüşebilir. Örneğin bir güneş pili, güneş ışınımını elektrik enerjisine dönüştürür ve böylece ampul yanar veya bilgisayara güç sağlanır.

<span class="mw-page-title-main">Türkiye'de güneş enerjisi</span> güneşten gelen ısı ve elektrik enerjisi

Enerji Bakanlığı'nca hazırlanan Türkiye'nin Güneş Enerjisi Potansiyeli Atlasına (GEPA) göre yıllık toplam güneşlenme süresi 2.737 saat, yıllık toplam gelen güneş enerjisi 1.527 kWh/m².yıl olduğu tespit edilmiştir. Türkiye'nin toplam güneş enerjisi kurulu gücü 9.319 MW'dır.

<span class="mw-page-title-main">Türkiye'de yenilenebilir enerji</span>

Türkiye'de yenilenebilir enerjinin resmi alt yapı kazanması 2005'te çıkartılan Yenilenebilir Enerji Kanunu (YEK)'e dayanmaktadır, ayrıca AB'ye uyum kapsamında 2011-2020 yıllarını kapsayan Ulusal Yenilenebilir Enerji Eylem Planı (YEEP) yürürlüğe girmiştir. Plana göre 2023'te Türkiye'de üretilen elektriğin %22'si hidroelektrikten ve %16'sı diğer yenilenebilir enerji kaynaklarından üretilmesi hedeflendi YEEP'e göre ulaştırma sektörünün %10'u yenilenebilir enerjiden yararlanması planlandı. 2023 yılı sonu verilerine göre yenilenebilir enerji kurulu gücü 59 bin 236 megavat oldu. 2023 yılında yenilenebilir enerjinin kurulu güçteki payı %56, üretimdeki payı ise %42 oldu.

<span class="mw-page-title-main">Elektrik üretimi</span>

Elektrik üretimi, elektrik ve diğer kaynaklardan birincil enerji üretme sürecidir. Elektrik üretiminin temel ilkeleri İngiliz bilim insanı Michael Faraday tarafından 1820'lerde ve 1830'ların başında keşfedildi. Onun temel yöntemi bugün hâlâ kullanılmaktadır: Elektrik, bakır gibi iletken bir telin manyetik bir alan içinde hareket ettirilmesi ile üretilir. Elektrik jeneratörü, bir mıknatıs içinde dönen sarılı iletken tellerin bulunduğu ve bu tellerin mıknatıs içinde dönmesiyle elektrik akımı üreten bir makinedir. Evlerimizde, işyerlerimizde, endüstride gereksinim duyduğumuz büyük miktardaki elektrik enerjisini elde etmek için, elektrik jeneratörlerini döndürecek büyük güç santrallarına ihtiyaç duyarız. Çoğu güç santrali, jeneratörü döndürmek için ısı üretiminde bulunurlar. Fosil yakıtlı santrallar ısı üretimi için doğal gaz, kömür ve petrol yakarlar. Nükleer santrallar da uranyum yakıtını parçalayarak ısı üretirler. Ancak bütün bu değişik tip santrallar ürettikleri ısıyı, suyu buhar haline dönüştürmek için kullanırlar. Oluşan buhar ise elektrik jeneratörüne bağlı olan türbine verilir. Su buharı, türbin şaftı üzerinde bulunan binlerce kanatçık üzerinden geçerken daha önce üretilen ısıdan almış olduğu enerjiyi kullanarak, türbin şaftını döndürür. İşte bu dönme, jeneratörün elektrik üretmek için gereksinim duyduğu mekanik harekettir. Jeneratörde oluşan elektrik ise iletim hatları denilen iletken teller ile kullanılacağı yere gönderilir. Türbinden çıkan, enerjisi diğer bir deyişle basınç ve sıcaklığı azalmış buhar ise yoğunlaştırıcı (kondenser) denilen bölümde soğutulup su haline dönüştürüldükten sonra, tekrar kullanılmak üzere santralın ısı üretilen bölümüne geri gönderilir. Yoğunlaştırıcıda soğutma işini sağlayabilmek için deniz, göl veya ırmaklarda bulunan su kullanılır. Su kaynaklarından uzak bölgelerde ise santralın hemen yanında bulunan ve uzaktan bakıldığı zaman geniş dev bacalara benzeyen soğutma kuleleri kullanılır. Bu kulelerin üzerinde görülen beyaz duman ise su buharıdır.

<span class="mw-page-title-main">Türkiye'de enerji</span>

Türkiye her yıl birincil enerjisi 6 exajoule tüketiyor, kişi başı 20 megawatt saat (MW/s)'ten fazla. Türkiye'de enerji beşte dört'ten fazla fosil yakıtan: %31 petrol, %28 doğalgaz ve %27 kömür(2016 itibarıyla). Türkiye'nin enerji politikası fosil yakıtın ithalatını küçültmek ister, çünkü onlar ithalatın ödemelerinden dörtte biri kapsamaktadır.. Enerjisi kaynaklarının fosil yakıt olması yüzünden Türkiye’den sera gazı emisyonları dünyada ortalama kişi başından daha büyük, yılda kişi başına 6 ton'dan fazla gelmektedir.

Türkiye'de hidroelektrik enerjisi, birincil enerji üretiminin %14'ünü, toplam tüketiminin %3,9'unu karşılamaktadır.

<span class="mw-page-title-main">Akıllı şebeke</span>

Akıllı şebekeler, içlerinde çeşitli işlemlerin yürütüldüğü, akıllı sayaçlar ile enerji ölçümlerinin yapıldığı ve yenilenebilir enerji kaynakları ile birlikte diğer verimli enerji kaynaklarının bulunduğu bir çeşit elektrik şebekeleridir. Elektriksel gücü düzenleme, kontrolü ve dağıtımı akıllı şebekelerin önemli özelliklerindendir.

<span class="mw-page-title-main">Arnavutluk'ta yenilenebilir enerji</span>

Arnavutluk'ta yenilenebilir enerji, biyokütle, jeotermal, hidrolik güç, güneş ve rüzgâr enerjisini kapsamaktadır. Arnavutluk çoğunlukla hidroelektrik kaynaklara güvenmektedir, bu nedenle su seviyeleri düşük olduğunda zorlanmaktadır. Arnavutluk'ta iklim Akdeniz'dir, bu nedenle güneş enerjisi üretimi için önemli bir potansiyele sahiptir. Dağ kotları rüzgâr projeleri için iyi alanlar sağlar. Arnavutluk'ta doğal kuyular olduğu için potansiyel olarak kullanılabilir jeotermal enerji de vardır.