İçeriğe atla

Kapalı zamansı eğri

Kapalı zamansı eğri (KZE), matematiksel fizikte, “kapalı” uzayzamanda, başlangıç noktasına geri dönen bir parçacığın Lorentz manifoldundaki zaman çizgisidir (4 boyutlu uzayda hareket eden parçaların kendine özgü yolu). Bu olasılık ilk defa, genel göreliliğin eşitsizliklerine uygun bir çözüm keşfetmiş olan Kurt Gödel tarafından 1949 yılında ortaya çıkartılmıştır. Gödel, KZElerin aynı zamanda Gödel ölçüsü olarak bilinmesini sağlamıştır ve o zamandan beri de Tipler silindiri ve geçilebilir solucandelikleri gibi KZEleri içeren başka genel rölativite çözümleri bulunmuştur. Eğer KZEler varsa, varlıkları geriye doğru zaman yolculuğunun en azından kuramsal olarak olası olduğuna kanıt olarak sunulabilir, bu da dede paradoksu kaygısını ortaya çıkartabilir, ancak Novikov öztutarlılık ilkeleri bu biçim paradokslardan kaçınılabileceğini belirtmektedir. Bazı fizikçiler, belirli genel görelilik çözümlerinde yer alan KZElerin, ileride ortaya atılacak ve genel göreliliğin yerine geçecek olan kuantum kütleçekimi kuramıyla denklemden atılabileceğini savunmaktadır, Stephen Hawking bu görüşü kronoloji korunumu varsayımı olarak adlandırmıştır. Diğerleri ise, belirli bir uzayzamandaki tüm kapalı zamansı eğrilerin aynı olay ufkundan geçmesi durumunda –ki bu da kronojik sansür olarak isimlendirilebilecek bir özelliktir–; bu uzayzaman tüm olay ufuklarından temizlense dahi, yine de düzgün nedensellikte davranacağını ve bir gözlemcinin nedensellik ihlalini belirleyemeyeceğini savunmaktadırlar.[1]

Işık konileri

Aşağıdaki ışık konisi yassı uzalardaki ışık konilerinin özelliklerini taşımaktadır – ışık konisinde yer alan tüm koordinatların sonraki bir zamanı vardır. Yukarıdaki koni yalnızca diğer uzamsal konumları göstermekle kalmayıp, bununla beraber x=0 durumunu gelecek zamanlar için dahil etmemekte ve önceki zamanlar için dahil etmektedir

Genel görelilikte bir sistemin evriminden ya da daha spesifik olmak gerekirse Minkowski uzayından bahsederken, fizikçiler çoğunlukla “ışık konisi”ne başvururlar. Işık konisi; mevcut durumu verilen bir cismin gelecekte geçireceği tüm olası evrimleri ya da mevcut konumu verilen cismin tüm olası konumlarını yansıtır. Cismin olası gelecek konumları, hareket edebileceği hızla sınırlıdır ve bu da en fazla ışık hızı olabilir. Örneğin, t0 anında p konumunda bulunan bir cisim t1 zamanına kadar yalnızca c(t1 − t0) sınırında bulunan konumlarda yer alabilir.

Bu genelde konumlar yatay, geçen zaman da dikey eksende uzanacak şekilde; zaman için t ve uzay için ct birimleri kullanılarak grafikte gösterilir. Buradaki temsilde ışık t zamanda ct birim yol alırken ışık konisi, cismi merkez alan 45 dereceli açılarla gösterilmiştir. Böyle bir diyagramda, cismin gelecekteki tüm olası konumları koni üzerinde yer almaktadır. Buna ek olarak, her uzay konumunun bir gelecek zamanı vardır, bunun anlamı da herhangi bir cismin uzaydaki herhangi bir konumda süresiz olarak kalabileceğidir.

Bu diyagram üzerindeki her bir noktaya durum denir. Ayrık durumlara, eğer zaman ekseni boyunca ayrılmışlar ise zamansı ve eğer uzay ekseni boyunca ayrılmışlarsa uzaysı denir. Eğer cisim serbest düşüşte olsaydı, t-ekseni boyunca yukarı yönde hareket edecek; eğer ivmelenirse aynı zamanda x ekseninde de hareket edecektir. Cismin izleyebileceklerinin aksine, uzayzamanda izlediği esas yola zaman çizgisi denir. Bir diğer tanım da, ışık konisinin tüm muhtemel zaman çizgilerinin temsili olduğudur.

“Basit” uzayzaman metriklerinde ışık konisi zamana doğru yönelmektedir. Bu da bir cismin aynı anda iki yerde bulunamayacağı olgusuna tekabül etmektedir, alternatif bir tanımsa cismin anlık olarak başka bir konuma gidemeyeceğidir. Bu uzayzamanlarda fiziksel cisimlerin zaman çizgileri, tanımsal olarak zamansıdır. Ancak bu yönelim yalnızca “lokal yassı” uzayzamanlar için geçerlidir. Eğimli uzayzamanlarda ışık konisi, uzayzamanın jeodeziğine doğru yana yatacaktır. Örneğin, bir yıldızın yakınlarında hareket ederken cisim yıldızın yerçekimi tarafından “çekilecek”, cismin zaman çizgisini etkileyecektir, bu yüzden de gelecek pozisyonların yıldızlara yakın şekilde uzanması olasıdır. Bu da denk gelen uzayzaman diyagramına doğru hafif yana yatmış bir ışık konisi olarak temsil edilmektedir. Bu koşullar altında serbest düşüşte olan bir cisim lokal t ekseninde ilerlemeye devam eder ancak dışarıdan bakan bir gözlemciye göre uzayda da ivmelenmekte olduğu görülecektir – örneğin cisim yörüngede değilse bu yaygın bir durumdur.

Uç örneklerde, uygun derecede yüksek eğimli metrike sahip uzayzamanlarda, ışık konisi 45 dereceden daha fazla da yana yatabilir. Bunun anlamı, cismin referans sistemine göre harici bir nihai koordinattan bakan gözlemcinin uzaysı ayrılmış potansiyel “gelecek” pozisyonlar görebileceğidir. Bu dış bakış açısıyla, cisim anlık olarak uzay boyunca seyahat edebilir. Bu tür durumlarda cismin mevcut uzaysal konumu kendi gelecek ışık konisinde bulunmayacağından, cisim hareket etmek zorundadır. Ek olarak, yeterli miktarda yana yatmayla, "geçmiş"te bulunan olay konumları dışarıdan görünebilir olacaktır. Kendisine uzay ekseni olarak görünen şeyin uygun bir hareketiyle, cisim dışarıdan bakıldığında zaman boyunca hareket ediyormuş gibi görünecektir.

Kapalı zamansı eğri, buna benzer ışık konilerinin kendileri üzerinden döngü oluşturaca şekilde bir araya getirilerek yaratılabilir, böylelilkle bir cismin bu döngü boyunca hareket edip sonra da harekete başladığı yere ve zamana dönmesi mümkün olacaktır. Böyle bir yörüngede bulunan cisim, serbest düşüşte bulunduğu sürece uzayzamanda tekrar tekrar aynı noktaya dönecektir. Orijinal uzayzaman konumuna dönmesi yalnızca bir ihtimaldir; cismin gelecek ışık konisine zamanda hem ileride hem de geride bulunan uzayzaman noktaları dahildir ve bu yüzden cismin bu koşullar altında zaman yolculuğu yapabilmesi ihtimaller dahilindedir.

Genel görelilik

KZEler, genel göreliliğin konusu olan Einstein alan denklemlerinin yerel olarak karşı gelinemez kesin sonuçlarında karşımıza çıkar, bunlara en önemli çözümler de dahildir. Bunlar arasında:

  • Misner Uzayı (ayrık ittirim ile yörünge manifoldu yapılmış Minowski uzayı)
  • Kerr vakumu (dönen yüksüz bir kara deliği model almıştır)
  • Dönen BTZ kara deliğinin iç kısmı
  • van Stockum tozu (tozun silindirik simetrik dizilimini model almıştır)
  • Gödel lambdatozu (dikkatle seçilmiş kozmolojik sabit terime sahip bir tozu model almıştır)
  • Tipler silindiri (KZElerin bulunduğu silindirik simetrik metrik)
  • İki dönen top gibi laboratuvar sonuşlarını anlatan Bonnor Steadman çözümleri
  • J. Richard Gott, kozmik sicimler kullanarak KZE yaratabilecek bir mekanizme önermiştir.

Bu örneklerden Tipler silindiri gibi bazıları, daha çok yapaydır ancak Kerr çözümlerinin harici kısmının bir bakıma genel olduğu düşünülmektedir, bu yüzden de dahili kısmının KZEler barındırdığını öğrenmek umut kırıcı olmaktadır. Çoğu fizikçi bu tür çözümlerdeki KZElerin yapay olduğunu düşünmektedir.

Sonuçlar

KZElerin bir özelliği de önceki zamanlara bağlı zaman çizgileri açma ihtimalleridir ve böylelikle önceki bir sebeple bağlantısı geriye doğru takip edilemeyecek olayları da açmış olurlar. Genel olarak nedensellik, uzayzamandaki her bir olayın, her nihai koordinatındaki kendinden önce gelen sonuca bağlanmasına gerek duyar. Bu prensip, genel rölativitenin uzaysı Cauchy yüzeyinde bulunan bir evrenin tüm bilgisiyle, uzayzamanın geri kalanının tüm hallerinin bilinebileceğini söyleyen determinizmde kritiktir. Ancak KZElerde nedensellik parçalanır çünkü bir olay sebebiyle “aynı anda” gerçekleşebilir –bir anlamda olay kendi sebebi olabilir. Yalnızca geçmişin bilgisine dayanarak, bir şeyin KZEde varolarak uzayzamandaki diğer nesnelere müdahale edip edemeyeceğini anlamak mümkün değildir. Bu yüzden de bir KZE Cauchy ufkuyla ve uzayzamanda herhangi bir geçmiş zamanın bütün bilgisiyle bile tahmin edilemeyecek bir bölgeyle sonuçlanır.

Herhangi bir KZE, sürekli olarak KZE haliyle deforme edilemez (bunun anlamı bir KZE ve noktanın zamansı uzamdaş olmadığıdır), çünkü manifold bu noktada olağan haliyle uygun davranmayacaktır. KZEnin bir noktaya doğru deforme edilmesine engel olan topolojik özelliğinin adı zamansı topoloji özelliğidir.

KZElerin varlığı, evrendeki madde-enerji alanlarının fiziksel olarak izin verilebilir durumlarına engellemeler getirecektir. Kapalı zamansı zaman çizgileri ailesi boyunca alan konfigürasyonu yaymak, orijinalinin aynısı bir durumla sonuçlanmak zorundadır. Bu, bazı biliminsanlarınca KZElerinde var olmadığını kanıtlamak için bir yaklaşım olarak keşfedilmiştir. KZElerin varlığı aynı zamanda kuantum ve klasik hesaplama denkliklerinin de varlığını ima etmektedir (her ikisi de PSPACEte).[2]

Büzülebilir ve büzülemez

İki KZE sınıfı vardır. Bir noktaya büzülebilen KZEler vardır (eğer her yere doğru gelecek yönelimli zamansı olması noktasında ısrarcı değilsek) ve büzülebilir olmayan KZEler vardır. İkincisi için her zaman evrensel kapsam uzayına başvurabiliriz ve nedenselliği tekrar sağlayabiliriz. İlki içinse, bu tür bir prosedür mümkün değildir. Hiçbir kapalı zamansı eğri, zamansı eğriler boyunca uzanan zamansı topografi kullanılarak tek bir noktada büzülemez, zira bu nokta nedensel anlamda uygun davranmayacaktır.[1]

Cauchy ufku

Kronoloji kurallarına uymayan küme, KZElerin içinden geçtiği noktalar kümesidir. Bu kümenin sınırı ise Cauchy ufkudur. Cauchy ufku, kapalı boş jeodezikler tarafından oluşturulur. Her bir kapalı boş jeodezikle bağlantılı olan, ilgin parametrelerin döngü etrafındaki değişim hıznın yeniden ölçeklendirilmesini tanımlayan bir kızıl kayma faktörü mevcuttur. Bu kızıl kayma faktörü nedeniyle, ilgin parametreler, belli bir sayıda dönüşten sonra sonlu bir sayıda duracaktır çünkü geometrik seriler yakınsaktır.

Ayrıca bakınız

  • Zamansı
  • Uzayzaman
  • Nedensel yapı
  • Nedensellik şartları
  • Roma yüzüğü

Notlar

  1. ^ a b H. Monroe (2008). "Are Causality Violations Undesirable?". Foundations of Physics. 38 (11). ss. 1065–1069. arXiv:gr-qc/0609054 $2. Bibcode:2008FoPh...38.1065M. doi:10.1007/s10701-008-9254-9. 
  2. ^ Watrous, John; Aaronson, Scott (2009). "Closed timelike curves make quantum and classical computing equivalent". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 465 (2102). s. 631. arXiv:0808.2669 $2. Bibcode:2009RSPSA.465..631A. doi:10.1098/rspa.2008.0350. 

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Özel görelilik</span> izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir

Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:

  1. Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
  2. Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

Zamanda yolculuk; zaman içinde belirli noktalar arasındaki hareket, bir nesne ya da bir kişi tarafından uzayda farklı noktalar arasındaki harekete benzer şekilde, tipik olarak bir zaman makinesi veya bir solucan deliği olarak bilinen varsayımsal bir aygıtın kullanılması ile hareket kavramıdır. Zaman yolculuğu, felsefe ve kurguda yaygın olarak kabul gören bir kavramdır.

<span class="mw-page-title-main">Eylemsizlik momenti</span> dönmeye karşı gösterilen zorluk

Atalet momenti veya eylemsizlik momenti, dönmekte olan bir cismin, dönme hareketine karşı durmasına eylemsizlik momenti denir. Eylemsizlik momenti, toplam dönme hareket gücüne karşı direnç oluşturur ve bu yüzden cisim, tam verimde dönemez.

<span class="mw-page-title-main">Kara delik</span> çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, genellikle yüksek kütleli gök cismi

Kara delik; astrofizikte, çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, büyük kütleli bir gök cismidir. Kara delik, uzayda belirli nitelikteki maddenin bir noktaya toplanması ile meydana gelen bir nesnedir de denilebilir. Bu tür nesneler ışık yaymadıklarından kara olarak nitelenirler. Kara deliklerin "tekillik"leri nedeniyle, üç boyutlu olmadıkları, sıfır hacimli oldukları kabul edilir. Kara deliklerin içinde ise zamanın yavaş aktığı veya akmadığı tahmin edilmektedir. Kara delikler Einstein'ın genel görelilik kuramıyla tanımlanmışlardır. Doğrudan gözlemlenememekle birlikte, çeşitli dalga boylarını kullanan dolaylı gözlem teknikleri sayesinde keşfedilmişlerdir. Bu teknikler aynı zamanda çevrelerinde sürüklenen oluşumların da incelenme olanağını sağlamıştır. Örneğin, bir kara deliğin potansiyel kuyusunun çok derin olması nedeniyle yakın çevresinde oluşacak yığılma diskinin üzerine düşen maddeler diskin çok yüksek sıcaklıklara erişmesine neden olacak, bu da diskin yayılan x-ışınları sayesinde saptanmasını sağlayacaktır. Günümüzde, kara deliklerin varlığı, ilgili bilimsel topluluğun hemen hemen tüm bireyleri tarafından onaylanarak kesinlik kazanmış durumdadır.

<span class="mw-page-title-main">Kırmızıya kayma</span>

Fizik ve astronomide kırmızıya kayma diye tanımlanan fenomen, bir cisimden yayılan ışımanın dalga boyunun artmasıdır. Görülebilen ışık için bu ışığın renginin elektromanyetik tayfın kırmızı yöne doğru kaymasıdır. Tersine dalga uzunluğunun azalması, maviye kayma olarak bilinir. Kâinat'ta gözlenen galaksilerden gelen ışığın birkaç istisnaî durum dışında tayfın hep kırmızı bölgesine kaydığı gözlenir. Edwin Hubble, bu gözlemin sonucunda Kâinat'ın yönden bağımsız olarak genişlediğini söylemiştir.

Sapma, genel olarak yön değiştirme anlamına gelmektedir. Herhangi bir referans noktasına göre belli bir açıyla seyreden bir cismin seyir açısı değiştiğinde, o cisim sapmış olur.

<span class="mw-page-title-main">Uzayzaman</span> Matematik modeli

Uzayzaman, uzay ile zamanı "uzay-zaman sürekliliği" adı verilen yapıda birleştiren matematik modeli. Öklitçi yaklaşıma göre evren uzayın üç boyutu ve dördüncü boyutu oluşturan zamandan oluşur. Fizikçiler, uzay ve zaman kavramlarını tek bir çatı altında birleştirmek yoluyla, karmaşık fizik teorilerini önemli ölçüde basitleştirmeyi ve evrenin işleyişini süpergalaktik ve altatomik seviyelerde daha basit ve ortak bir dilde açıklamayı başarmışlardır.

<span class="mw-page-title-main">Gökküre</span>

Gökküre, Gökbilim ve seyrüseferde, Dünya'yla eşmerkezli ve eşeksenli, devasa çaplı varsayımsal bir küredir. Gökyüzündeki tüm cisimlerin iç yüzeyinde yer aldığı bir küre şeklinde düşünülebilir. Gök ekvatoru yer ekvatoruyla, gök kutupları da yerin kutup noktalarıyla aynı doğrultuda çakışıktır. Gökküre yansıtması gökcisimlerinin konumlarının belirlenmesi için çok pratik bir yöntemdir.

Kuantum kütleçekim kuramsal fiziğin bir dalı olup doğanın temel kuvvetlerinden üçünü tanımlayan kuantum mekaniği ile dördüncü temel kuvveti kütleçekimin kuramı olan genel göreliliğini birleştireceği düşünülen bir kuramdır.

Işık ötesi hız, ışıktan hızlı bilgi aktarımı ve ışıktan hızlı yolculuk, bilginin ve maddenin ışık hızının daha üstünde hızlarla hareket etmesi halinde kazanacağı hız. Özel görelilik kuramına göre, kütlesi olan ve ışık hızından düşük hıza sahip olan bir parçacığın ışık hızına ulaşabilmesi için sonsuz enerjiye ihtiyacı vardır. Ne var ki özel görelilik, ışıktan hızlı hareket eden kütleli parçacıkların varlığını her zaman yasaklamaz.

<span class="mw-page-title-main">Mutlak zaman ve mekan</span>

Aslen Sir Isaac Newton tarafından Doğa Felsefesinin Matematiksel İlkeleri adlı kitabında tanıtılan mutlak zaman ve mekan kavramları Newton mekaniğini kolaylaştıran teorik bir temel sağlamıştır. Newton'a göre, mutlak zaman ve mekan sırasıyla nesnel gerçekliğin bağımsız yönleridir. Mutlak, gerçek ve matematiksel zaman, kendisi ve kendi doğası gereği değişmeyen ve değiştirilmeyen şekilde akar ve diğer bir deyişle ‘süre’ denir; göreceli, görünür ve genel zaman, hareketle ifade edilen sürenin makul ve dış ölçüsüdür ki bu da genellikle ‘gerçek zaman’ olarak adlandırılır.

<span class="mw-page-title-main">Van Stockum tozu</span>

Genel görelilikte, Van Stockum tozu Einstein alan denklemlerinin silindirik simetri ekseni etrafında dönen tozun oluşturduğu yer çekimi alanı için kesin sonucudur. Tozun yoğunluğu eksenin uzaklığıyla beraber arttığı için çözüm oldukça yapay olmakla kalmaz, aynı zamanda genel görelilikteki bilinen en basit çözümlerden olmakla beraber aynı zamanda Pedagojik olarak önemli örneklerden biri olarak gösterilir.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

Fizik'te, yerçekimi teorileri kütleli cisimlerin hareket mekanizmalarını kapsayan etkileşimleri esas alır. Antik zamanlardan bu yana birçok Yerçekimi teorisi ortaya atılmıştır.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Minkowski diyagramı</span>

Minkowski diyagramı ya da uzay zaman diyagramı, 1908 yılında Hermann Minkowski tarafından geliştirilen ve uzay ve zaman, Özel görelilik teorisi içinde yer alan uzay ve zamanın, özelliklerinin örneklerini temin etmeyi sağlayan diyagram. Zaman genişlemesi ve uzunluk kısalması gibi fenomenlere ilişkin sayısal yönden bir kolay anlaşılabilme özelliği sağlıyordu ve bunu yaparken de matematiksel denklemleri kullanmıyordu.

Fizikte, hayat çizgisi bir objenin 4 boyutlu uzayda işlediği yola denir. Objenin geçmiş mekanını her an takip etmeye de bu ad verilir. Hayat çizgisi yörüngeden ayrı bir kavramdır. Bu kavramlar zaman boyutuyla ayrılır. Ve genelde yörüngelerden daha geniş bir alanı temsil ederler, diğerlerine oranla özel göreliliğin gerçek doğasını ortaya çıkarırlar. Bu fikir Hermann Minkowski tarafından ortaya atılmıştır.Bu terim, genelde Görelilik Teorisinde kullanılır.

<span class="mw-page-title-main">Kütleçekimsel tekillik</span> koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum

Kütleçekimsel tekillik ya da uzay-zaman tekilliği koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum olarak tanımlanır. Bu nicelikler, maddenin yoğunluğunun da dahil olduğu uzay-zaman eğriliklerinin skaler değişmeyen nicelikleridir. Uzay zamanın normal kuralları tekillik içinde var olamaz.