İçeriğe atla

Kanat

Ölmüş bir Avrupa saksağanına ait kanat fotoğrafı.
Heliconius sapho kelebeğine ait kanatlar.

Kanat, uçma veya hareket etme amacıyla kullanılan ve genellikle kuşlar, böcekler veya uçaklar gibi hayvanlar veya araçlar tarafından kullanılan bir yapıdır. Kanatlar, aerodinamik prensiplere dayalı olarak tasarlanmış ve şekillendirilmiştir, böylece hava akışını kontrol ederek uçuş veya hareket sağlayabilirler. Kanat belli bir evrimsel ve biyolojik süreç sonrası oluşabilmesinin yanı sıra beşeri olarak da modellenebilip uçmak veya bir sıvı içerisinde hareket sağlamak için de özelleştirilebilmektedir.

Etimolojisi ve kullanımı

Kanat" kelimesinin kökeni Türkçedir ve eski Türkçede "kana+(d)" olarak kullanılıyordu. Bu kelime, Orta Asya'da (Moğol) kullanılan Türk lehçelerinde de aynı şekilde kullanılıyordu.[1]

"Kanat" kelimesi, Türkçeden diğer dillere de geçmiştir. Örneğin, Farsçada "kanat" kelimesi aynı şekilde kullanılırken, Arapçada "canaat" kelimesi olarak yer almaktadır.[2]

Köken olarak "kanat" kelimesi, Türkçedeki "kan" kelimesinden türemiştir. "Kan" kelimesi, bir şeyin yanlarına eklenen uzantıları ifade etmek için kullanılan bir kelimeydi. Bu nedenle, "kanad" kelimesi, bir şeyin yanlarında bulunan uzantılar anlamında kullanılmıştır ve zamanla "kanat" şekline dönüşmüştür.[3]

Günlük hayatta kanat;

Kanat, günlük hayatta farklı alanlarda kullanılan ve çeşitli anlamları olan bir kelime olarak karşımıza çıkmaktadır. Örneğin, havacılıkta kanat, uçakların uçmasını sağlayan, yüzey alanı geniş ve genellikle aerodinamik olarak tasarlanmış yapılardır. Kanatlar, uçağın havalanmasını, havada kalmasını ve iniş yapmasını sağlayan önemli bir bileşendir.

Kanat ayrıca, hayvan anatomisinde kullanılan bir terimdir. Kuşlar, tavuklar, ördekler gibi kanatlı hayvanların uçmasını sağlayan ve hareketli parçalardan oluşan yapıya kanat denir. Ayrıca, kanatlı hayvanların etleri de gastronomi alanında yaygın olarak kullanılmaktadır.

Otomobillerde de kullanılan kanat, arka kanat veya spoiler olarak adlandırılmaktadır. Bu yapılar, aracın hava direncini azaltarak performansını artırmak için tasarlanmıştır.

Son olarak, insan anatomisinde de kanat terimi kullanılmaktadır. Omuzların ve kolların altındaki bölgeye kanat denir. Bu bölge, bazı sporlarda veya fitness çalışmalarında özel bir öneme sahiptir.

Aerodinamik

Aerodinamik Kuvvetlerin bileşenleri
Bir uçağa etki eden aerodinamik kuvvetler.

Kelime iki Yunanca kelimeden gelir:  hava ile ilgili  "aerios" ve kuvvet anlamına gelen "dynamis" . Aerodinamik, kuvvetlerin ve bunun sonucunda nesnelerin havadaki hareketinin incelenmesidir.[4]

Aerodinamik Kuvvetler;

İki katı cisim bir mekanik süreçte etkileştiğinde, kuvvetler temas noktasında iletilir veya uygulanır. Ancak bir katı cisim bir akışkanla etkileştiğinde, akışkan şeklini değiştirebildiği için açıklamak daha zordur. Bir akışkan içindeki katı bir cisim için "temas noktası", cismin yüzeyindeki her noktadır. Akışkan, cisim etrafında akabilir ve tüm noktalarda fiziksel teması sürdürebilir. Katı bir cisim ile akışkan arasındaki mekanik kuvvetlerin iletimi veya uygulanması, cismin yüzeyindeki her noktada gerçekleşir. Ve iletim, akışkan basıncı aracılığıyla gerçekleşir.[5]

Aerodinamik kuvvetler, nesnelerin hareket ettiği ortamdaki gaz moleküllerinin hareketiyle ilişkilidir. Bu gaz molekülleri, nesneyle etkileşime girerek aerodinamik kuvvetler oluştururlar. Bu kuvvetler, nesnenin şekline, hızına ve hareket ettiği ortamın özelliklerine bağlı olarak değişir.

Aerodinamik kuvvetler, genellikle dört temel kuvvettir: kaldırma kuvveti, sürükleme kuvveti, yanlama kuvveti ve moment kuvveti.

  • Kaldırma kuvveti: Bu kuvvet, nesnenin hareket ettiği ortamda oluşan basınç farklarından kaynaklanır. Hava akımı, nesnenin şekline göre değişen basınç dağılımlarına neden olur. Bu basınç farkları, nesnenin alt yüzeyinde daha yüksek basınç ve üst yüzeyinde daha düşük basınç oluşmasına sebep olur. Bu farklı basınçlar, nesneye yukarı doğru kaldırma kuvveti uygular.
  • Sürükleme kuvveti (Sürtünme kuvveti): Bu kuvvet, nesnenin hareket ettiği ortamın direncinden kaynaklanır. Hava molekülleri, nesnenin yüzeyine çarptıkça, hızlarını kaybederler ve nesne üzerinde bir sürtünme kuvveti uygularlar. Bu kuvvet, nesnenin hareket yönüne zıt bir kuvvettir.
  • Yanlama kuvveti: Bu kuvvet, nesnenin hareket ettiği ortamdaki hava akımının yönüne dik bir kuvvettir. Bu kuvvet, nesnenin şeklinden veya hareket yönünden kaynaklanan basınç farklarından kaynaklanır.
  • Moment kuvveti: Bu kuvvet, nesnenin hareket yönüne dik bir kuvvetin etkisiyle nesnenin çevresinde bir dönme hareketi oluşturur. Bu kuvvet, nesnenin geometrisi, ağırlık merkezi konumu ve hareket yönü gibi faktörlere bağlıdır.[6] Bu kuvvetlere ek olarak "Yerçekimi kuvveti" ve motor kaynaklı "İtme kuvveti" de eklenebilmektedir. Yerçekimi kuvveti, cismin ağırlığını belirler ve her zaman aşağı yönü gösterir. İtme ise motorlar tarafından uygulanır ve aracı ileri yönde hareket etmeye zorlar.[6]

Kanatlar, aerodinamik kuvvetlerden bir bileşke gibi etkilenebilirler. Bir uçağın kanadı, hava akışına göre şekillendirilmiş bir yapıdır ve havanın kanadın üst ve alt tarafındaki farklı hızlarına göre farklı aerodinamik kuvvetler üretir.

Kanat üzerindeki en önemli aerodinamik kuvvetlerden biri kaldırma kuvvetidir. Kaldırma kuvveti, kanadın alt yüzeyindeki hava akışının hızlanması ve üst yüzeyindeki hava akışının yavaşlaması nedeniyle oluşan basınç farkı nedeniyle ortaya çıkar. Bu basınç farkı, kanadın alt tarafına doğru bir kuvvet oluştururken, kanadın üst tarafına doğru bir kuvvet üretir. Bu nedenle, kanat yukarı doğru itilir ve uçağın yükselmesine yardımcı olan bir kaldırma kuvveti üretilir.

Bir diğer önemli aerodinamik kuvvet de sürtünme kuvvetidir. Kanadın yüzeyi, havanın molekülleriyle sürtünerek, kanadın hareketine karşı bir sürtünme kuvveti üretir. Sürtünme kuvveti genellikle kanadın kaldırma kuvvetine karşı çalışır ve uçağın hızının artmasıyla artar.[7]

Kanadın aerodinamik performansı, kanadın boyutu, şekli, açısı, yüzey özellikleri ve uçağın hızı gibi faktörlere bağlıdır. Bu nedenle, aerodinamik kuvvetlerin etkisi, uçak tasarımı ve uçuş performansı üzerinde büyük bir öneme sahiptir.

Biyomekanik & mekanik

Bir kuşa ait ve uçuş için gereksimleri karşılayan kanatların detayları.

Kuş uçuşunun biyomekaniği;

Kuşların uçuşu, kuşların vücut kütlesi ve kanatlarının genişliği, şekli, kanat kemiği ve kas yapısı, kanatçıkların dizilimi gibi yapısal özellikleri tarafından belirlenir. Bu yapısal özellikler, kuşların aerodinamik prensipleri kullanarak hava akımını nasıl kontrol edeceğini ve böylece havada kalacaklarını ve manevra yapacaklarını sağlar.

Kuşların kanatlarının hareketi, kuşların kasları tarafından kontrol edilir. Kanat hareketi, kuşların omuz, dirsek ve el bileği eklemleri arasındaki kompleks bir koordinasyonla gerçekleştirilir. Bu hareket, kanat kemiği ve kas yapısının belirli bir şekilde çalışmasını gerektirir. Kuşların birincil uçuş kasları olan pectoralis ve supracoracoideus, büyük gerilim (birim kesit alanına düşen kuvvet) ve gerilme (relatif uzunluk değişimi) ile çalışma ve güç çıkışı için tasarlanmıştır. U şeklindeki eğriler, mekanik güç çıkışının uçuş hızı ile nasıl değiştiğini tanımlar, ancak bu eğrilerin şekilleri ve karakteristik hızları, morfoloji ve uçuş tarzına göre farklılık gösterir.[8][9]

Kuşların uçuş mekanizması, aerodinamik prensipleri kullanarak kanatların hava akımını nasıl kontrol edebileceğini ve böylece havada kalacaklarını ve manevra yapacaklarını sağlar. Bu prensipler arasında Bernoulli ilkesi, kanatların üst yüzeyindeki hava basıncının düşük olması nedeniyle oluşan kaldırma kuvveti gibi kuvvetler yer alır.

Kuşların uçuşunun biyomekaniği, kuşların anatomisi, kas ve sinir sistemleri, aerodinamik prensipleri ve fizyolojik süreçleri kapsar. Bu süreçler, kuşların uçuş hızı, yüksekliği, manevra kabiliyeti ve göç davranışları gibi önemli özelliklerinin anlaşılmasına yardımcı olur

Ayrıca bakınız

Kaynakça

  1. ^ "Kanat Nedir ? Kanat Ne Demek ?". www.turkcesozlukler.com. 15 Nisan 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Nisan 2023. 
  2. ^ "Kanat Kak-(Mak) Birleşik Fiilinin Kökeni Üzerine". On the Etymology of “kanat kak-(mak)” Compound Verb. Hüseyin YILDIZ - Dergipark. 23 Ocak 2018. 15 Nisan 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Ocak 2018. 
  3. ^ "Kanat Kelime Kökeni, Kelimesinin Anlamı - Etimoloji". www.etimolojiturkce.com. 15 Mayıs 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Nisan 2023. 
  4. ^ "Dynamics of Flight". www.grc.nasa.gov. 14 Eylül 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Nisan 2023. 
  5. ^ "Aerodynamic Forces". Bir sıvıya daldırılan herhangi bir nesne için, mekanik kuvvetler vücudun yüzeyinin her noktasına iletilir. Kuvvetler, yüzeye dik hareket eden basınç yoluyla iletilir. Net kuvvet, basınç ile tüm yüzey etrafındaki alanı entegre ederek (veya toplayarak) bulunabilir. Hareketli bir akış için, hız noktadan noktaya değiştiği için basınç noktadan noktaya değişecektir. Bazı basit akış problemleri için, Bernoulli denklemini kullanarak hız dağılımını biliyorsak, basınç dağılımını (ve net kuvveti) belirleyebiliriz. NASA. 25 Eylül 2022 tarihinde kaynağından arşivlendi. 
  6. ^ a b "What Are the Important Aerodynamic Forces?". resources.system-analysis.cadence.com (İngilizce). 7 Ocak 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Nisan 2023. 
  7. ^ "Aerodynamic forces and moments" (PDF). Aerodynamics: Classification and Practical Objectives, Some Fundamental Aerodynamic Variables, Aerodynamic Forces and Moments, Center of Pressure, Dimensional Analysis: The Buckingham Pi Theorem, Flow Similarity, Fluid statics, Types of Flow, Applied aerodynamics. Volkan PEHLİVANOĞLU. 17 Nisan 2023. 17 Nisan 2023 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Eylül 2019. 
  8. ^ Tobalske, Bret W. (Eylül 2007). "Biomechanics of bird flight". The Journal of Experimental Biology. 210 (Pt 18): 3135-3146. doi:10.1242/jeb.000273. ISSN 0022-0949. PMID 17766290. 18 Nisan 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Nisan 2023. 
  9. ^ "Evolution of Flight Muscle Contractility and Energetic Efficiency". Evolution of Flight Muscle Contractility and Energetic Efficiency. Tianxin Cao and J.-P. Jin. 9 Ekim 2020. 12 Kasım 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ekim 2020. 

İlgili Araştırma Makaleleri

Salma omurga ya da işler omurga, yelkenli teknelerin altında bulunan, temelde denge sağlamaya yarayan ağırlıktır. Yelkenlerin yarattığı kuvvete dengeleyici bir ters kuvvet üretmesi gerektiğinden genelde kurşundan yapılır. Zira eğer yeteri kadar ağır olmazsa tekne sert bir rüzgârda alabora olabilir. Salmanın bir diğer önemli işlevi de yandan gelen rüzgârın tekneyi rüzgâr altına sürüklemesine engel olmaktır. Bu iki işlevinden ötürü salma, yelkenli teknelerin temel parçalarından biridir.

<span class="mw-page-title-main">Uçak</span> Motorlu hava taşıtı

Uçak veya tayyare; hava akımının başta kanatlar olmak üzere kanat profilli parçaların alt ve üst yüzeyleri arasında basınç farkı oluşturması sayesinde havada tutunarak yükselebilen, uçma özellikli motorlu bir hava gemisi ve hava taşıtıdır. Pistonlu ya da jet motorlu, sabit kanatlı ve havadan ağır pek çok hava taşıtı uçak kategorisine dahildir. Günümüzde en temel uçak tipleri, yolcu uçağı, savaş uçağı, kargo uçağı olarak bilinirken, farklı coğrafi şartlara göre özelleştirmiş uçaklar da mevcuttur.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Flap</span>

Flaplar; uçakların genellikle kanat firar kenarında bulunan; kanat kamburluğunu artırarak öncelikle taşıma kuvvetini (L) ve kısmen de sürüklemeyi (D) artıran kumanda yüzeyleri. Flaplar uçuşun, özellikle iniş ve kalkış gibi düşük süratlerde daha yüksek taşıma kuvvetine ihtiyaç duyulan safhalarında kullanılırlar. Pek çok uçak tipinde flapların birden fazla ayar düzeyi (açısı) bulunur.

<span class="mw-page-title-main">Kanat profili</span>

Kanat profili veya aerofoil, kanat, yelken, dümen, pervane kanadı, rotor veya türbin gibi bir akışkan içindeki hareketi kaldırma kuvveti oluşturabilen nesnenin kesit şeklidir.

<span class="mw-page-title-main">Veter hattı</span>

Veter hattı, veter çizgisi veya kord hattı. Kord hattı, arka kenar ile kordun önde gelen kenara kesiştiği nokta arasındaki mesafedir. Kordun tanımlanmasında kullanılan öndeki nokta, en küçük yarıçaplı yüzey noktası olabilir. Bir türbin kanadı için kord, konveks tarafı yukarıya doğru bakacak şekilde düz bir yüzeye yatırıldığında, iki boyutlu kanat kesitinin ön ve arka noktalarının bir düz yüzeye değdiği noktalar arasındaki çizgi ile tanımlanabilir.

<span class="mw-page-title-main">Perdövites</span> akım ayrılması nedeniyle irtifada ani düşüş

Perdövites veya stall; akışkanlar dinamiğinde, bir akışkan içerisinde hareket eden bir cisme etki eden taşıma kuvvetinin -hücum açısının (AOA) kritik değeri geçmesi nedeniyle- azalması veya yok olması sonucunda cismin akışkan içerisinde tutunamaması. Kelimenin kökeni ise Fransızcada hız kaybı anlamına gelen "perte de vitesse"den gelmektedir.

<span class="mw-page-title-main">Sürükleme</span>

Sürükleme; akışkanlar mekaniğinde bir cismin, bir akışkan içindeki hareketine gösterdiği direnç. Sürükleme İngilizce drag sözcüğüne atfen "D" harfi ile gösterilir.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Parazit sürükleme</span>

Parazit sürükleme bir akışkan içerisinde bağıl olarak hareket eden cisme kendi varlığından kaynaklanarak etkiyen sürükleme kuvvetidir.

<span class="mw-page-title-main">Aerodinamik kuvvet</span>

Aerodinamik kuvvet, akış halindeki gazın cisimler üzerindeki kuvvet etkisidir. Aerodinamik biliminin ilgilendiği temel kuvvetlerdir. Hareketli akışa maruz kalan her cisme aerodinamik kuvvet uygulanır.

<span class="mw-page-title-main">Rüzgâr tüneli</span>

Rüzgâr tüneli, hava, sıvı ve plazma gibi hareketli bir akış içinde bulunan katı cisimlere akışın uyguladığı etkinin ve cisimlerin akış üzerindeki etkisinin incelenmesi, araştırılması ve yorumlanması için tasarlanarak üretilen ve içindeki akışkanla yapay olarak üretilen akışın hızının kontrol edilebildiğitünellere denir.

<span class="mw-page-title-main">Akım ayrılması</span>

Bir akışkan içerisinde hareket eden her katı cismin yüzeyinin etrafında viskoz kuvvetlerin oluştuğu bir sınır tabaka gelişir. Sınır tabakalar laminar ya da türbülanslı olabilir. Sınır tabakanın laminar mı türbülanslı mı olacağı lokal akış koşullarının Reynolds sayısı hesaplanarak makul bir şekilde bulunabilir.

<span class="mw-page-title-main">Dümen</span>

Dümen, deniz ve hava taşıtlarının sapma hareketini gerçekleştirmesine yarayan, dikey stabilize üzerindeki kumanda yüzeyi. Hidrolik ve joystick olmak üzere iki tür dümen vardır.

Aerodinamik bölümünde bahsedilen aerodinamik sürüklenim, bir akışkan yönünde hareket halinde olan herhangi bir katı cisme etki eden akışkan sürüklenim kuvvetine denir. Cisim baz alındığında bu kuvvet cismin yüzeyine etki eden basınç dağılımlarından(Dp) ve cisme etki eden kayma kuvvetlerinden(akışkanlığın sonucu [Df]) meydana gelir. Akışın özelliklerine göre hesaplama yapıldığında sürüklenim kuvveti 3 temel birime bağlıdır : şok dalgaları, girdaplar ve akışkanlık.

Akışkanlar dinamiğinde, sürüklenim bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

<span class="mw-page-title-main">Statik basınç</span>

Akışkanlar mekaniğinde, statik basınç birçok kullanışa sahiptir.

<span class="mw-page-title-main">Kuşların uçuşu</span>

Kuşların uçuşu, kuşların havalanarak uçtuğu çoğu kuş türü tarafından kullanılan ana hareket şeklidir. Uçuş, kuşların beslenmesine, üremesine, avcılardan kaçınmasına ve göç etmesine yardımcı olur.

<span class="mw-page-title-main">Rüzgar türbini aerodinamiği</span>

Rüzgarın enerjisi, rüzgar türbininin dönen kanatlarına rüzgarın uyguladığı aerodinamik kuvvetler yoluyla türbinin alternatöründe elektrik enerjisine çevrilir. Bu nedenle aerodinamik hesaplamalar rüzgar türbininde önemlidir. Çoğu makine gibi rüzgar türbinleri de hepsi farklı enerji kazanım kavramlarına dayanır.

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.